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Abstract: Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by
self-interference (SI). This is because a FD node’s transmitting signal generates significant interference
to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully
digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees
of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid
beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain.
This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or
SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can
change both the amplitude and phase of the wireless signal and send different data streams from each
antenna element. Our goal in this paper is to quantify the performance gap between these two radio
architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups.
To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna
FD solution to a hybrid beamforming architecture and compare the corresponding performance
metrics leveraging a fully programmable many-antenna testbed and collecting over-the-air wireless
channel data. We show that SI cancellation through beam design on a hybrid beamforming radio
architecture can achieve capacity within 16% of that of a fully digital architecture. The performance
gap further shrinks with a higher number of quantization bits in the hybrid beamforming system.

Keywords: Full-Duplex; MU-MIMO; self-interference; interference cancellation

1. Introduction

When a wireless communication device attempts to send a stream of data while receiv-
ing a different stream, two common techniques are time-division duplex, where intervals
alternate to allow each stream a portion of time to send some of its data, and frequency-
division duplex, where the allocated frequency band is split between streams. The majority
of existing systems operate in one of these two modes. Since the data rate scales with
both time and frequency, the maximum rate for each stream in both of these scenarios is
theoretically half of what it would be if each stream could use the entire frequency band for
the entire time period. This latter approach is known as full-duplex (FD) communication.

The main barrier to FD communication is self-interference (SI). Because the transmitter
of a device would be very close to its receiver, it can drown out the stream the device is
attempting to receive, potentially causing frequent outages [1,2]. When a FD device has
a small number of antennas, clever antenna placement can cancel out SI [3–7]. However,
in modern many-antenna base stations (BSs), such as cellular towers, which use multiple
antennas to send and receive with greater directionality (known as multiple-input and
multiple-output systems, or MIMO), this method does not work. There is a growing body
of research dedicated to the fundamental trade-off between beamforming gain and SI in
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many-antenna BSs, and to developing algorithms to maximize gain while minimizing
interference [3–10].

When developing techniques to reduce SI, assumptions must be made about the
underlying hardware involved. There are two main architecture types for many-antenna
BSs (Figure 1). In fully digital architectures, each transmitting antenna is connected to its
own RF chain, which can fine tune the phase and amplitude of the signal transmitted from
that antenna. In hybrid architectures, some antennas share RF chains, often via an FPGA,
resulting in less control over the amplitude but usually preserving control over the phase
of a signal.

Figure 1. (a) Example hybrid architecture. Each RF chain sends the same signal to multiple connected
antennas, altered only by phase shifters. (b) Example fully digital architecture. Every antenna has its
own RF chain attached, allowing for more complete signal control but increasing hardware costs.

For both architectures, existing solutions with decent performance in certain scenarios
exist [11–13], but not every technique was designed to scale into many-antenna BSs and/or
multi-user MIMO (MU-MIMO) scenarios, where a many-antenna BS may communicate
with different clients at the same time and frequency.

In this work, we investigate the performance trade-offs between hybrid and digital
architectures for FD many-antenna base stations. Using real-world channel measurements
from our custom 32-antenna BS and multiple-client setup, we compare the performance of
full-duplex BSs with hybrid and fully digital architectures in single-user and multiple-user
MIMO scenarios as the number of clients increases. Our key contributions are as follows:

• Implementation.We implemented two SI cancellation techniques on a fully pro-
grammable 32-antenna FPGA testbed: (i) a state-of-the-art technique (SoftNull [13]),
which is designed for fully digital architectures, and (ii) M-HBFD (Multi-User Hybrid
FD), which is an adaptation of SoftNull that we developed to reduce SI in hybrid
beamforming architectures.

• Channel Measurement. We gathered thousands of real-world channel measurements
in an indoor multi-path rich environment to experimentally compare the performance
of the two systems.

• SI and Sum Capacity Rate. We show that with five bits of phase quantization, M-HBFD
achieves close to 90% of SoftNull capacity with 15–25% increase in SI.

• Capacity per RF Chain. We evaluated the relative capacity for each technique normal-
ized by the number of RF chains utilized by the BS architecture for each technique.
We show that M-HBFD can provide up to 15x increase in per RF chain capacity when
all antennas are used to communicate with only a single client.

The rest of this paper is organized as follows. In Section 2, we discuss the background
information and related work. In Section 3, we formalize the system definition. In Section 4,
we discuss the SI cancellation techniques for both radio architectures. In Section 5, we
describe our experimental setup for channel measurements. In Section 6, we describe our
evaluation methodology. In Section 7, we present and discuss our findings. We conclude in
Section 8.
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2. Background and Related Work
2.1. Background
2.1.1. Architecture

There are two main architecture types for many-antenna base stations. In hybrid
architectures, one RF chain is connected to multiple antennas, resulting in less control
over the amplitude of the signal at each antenna but retaining some control over the phase
through a phase shifter. A phase shifter on each antenna element shifts the phase of the
signal by a complex coefficient with constant amplitude. In practice, a phase shifter is a
discrete quantized component with a few bits of resolution. For example, the phase of a
2-bit phase shifter is selected from the set {0◦, 90◦, 180◦, 270◦}.

Some hybrid architectures connect every RF chain to every antenna in parallel (an
arrangement known as a fully connected hybrid architecture), although this can be difficult
to implement at scale [14]. More often, antennas are connected to only one RF chain in
an array, creating independent subarrays. A typical hybrid architecture is depicted in
Figure 1a.

In fully digital architectures, each transmitting antenna is connected to its own RF
chain, as in Figure 1b. Since each antenna can send a signal formed completely indepen-
dently of the others, fully digital hardware has greater freedom for beamforming and, thus,
tends to outperform hybrid architectures. However, the increased number of full RF chains
requires more expensive hardware.

2.1.2. Massive (Many-Antenna) MIMO

The trend in wireless BSs is toward using an ever increasing amount of antennas,
and communicating with an increasing number of clients simultaneously (known as mas-
sive multi-user MIMO, or massive MU-MIMO) [15–18]. With more antennas comes greater
directionality in beamforming, leading to better signal quality and, thus, greater data rates
and more efficient use of resources. Since each client typically requires its own independent
stream of data, the maximum number of clients a BS can send a signal to simultaneously
is bounded by the number of RF chains a BS has. However, it is not always efficient to
communicate with this number of clients, and, in many-antenna systems, the ratio between
the number of antennas at the BS and the total number of antennas across all clients is high.

2.2. Related Work
2.2.1. Hybrid Architecture Full-Duplex

Hybrid architectures can sometimes yield sizable reductions in SI without increasing
the number of RF chains [11,12,19–21]. In Phased Array Full-Duplex [11], the optimal
trade-off between beamforming gain and SI when only adjusting the phase of the antenna
elements is estimated with a semidefinite relaxation. When the SI at each of the receive
antennas is highly correlated, such as in linear arrays, PAFD performs well. For planar
arrays, researchers have created an algorithm [12] which jointly forms a transmit and a
receive beam in an iterative method that converges on the optimal solution. Although an
iterative process that requires all beams to form together will face challenges scaling up
to multi-user BS scenarios, when communicating with two clients in FD the algorithm
performs well. Several other attempts at SI cancellation have included alterations to the
underlying hardware outside the scope of this paper [19,22–24].

2.2.2. Digital Architecture Full-Duplex

Due to their greater flexibility in output, fully digital architectures tend to outperform
hybrid architectures for complex many-antenna BSs attempting FD communication [13,25,26].
For example, SoftNull [13] is a leading fully digital algorithm which reduces SI while
explicitly preserving a desired number of antennas for beamforming use. One way to
do this would be to simply take the antennas which contribute most to SI and set their
output to zero. SoftNull takes a similar approach, but increases the efficacy by first taking a
singular value decomposition of the SI matrix between all transmit and receive antennas
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and setting the highest correlated vectors to zero instead. For example, if a higher level
application wanted to beamform with 6 antennas on a 9-antenna transmit array, SoftNull
nulls the 3 linear combinations of transmit antennas which contribute most to SI and
takes the remaining 6 as the usable, “effective” antennas to use for beamforming as the
application chooses.

2.2.3. Trade-Off Between Architectures

Although a typical hybrid architecture exhibits no independent control over the
amplitude of a signal at each antenna, some methods have been implemented [14,27,28] and
shown to improve beamforming gain over phase-only manipulation. However, previous
research has not focused on FD communication, and typically assumed communicating
with a small number of clients, posing difficulty for adaptation to MU-MIMO BSs.

In previous research [29], we assumed an architecture which is not fully digital but al-
lows discrete levels of amplitude in addition to phase control. We showed that in one-
downlink, one-uplink scenarios, a close enough discrete approximation to a fully digital
algorithm results in similar performance while using far fewer RF chains.

3. System Definition

A base station has M antennas arranged rectangularly, divided into a transmit array
with MTx antennas and a receive array of MRx antennas, where MTx + MRx ≤ M. The BS
communicates with Kup half-duplex uplink clients and Kdown half-duplex downlink clients
simultaneously. Each uplink/downlink client is equipped with only a single antenna.

A transmit array of MTx antennas is comprised of RTx rows of CTx antennas, where
RTx × CTx = MTx. Similarly, a receive array of MRx antennas is comprised of RRx rows of
CRx antennas, where RRx × CRx = MRx. For ease of discussion, in this paper, “rows”
run side to side, perpendicular to the division between transmit and receive arrays,
and “columns” run parallel to the division. A row in a transmit array will have one
end close to the receive array and one end far away (see Figure 2).

Figure 2. Example base station with MRx = MTx = 9 and RTx = CTx = RRx = CRx = 3.

A transmit array consists of NTx subarrays, where NTx can be any whole factor of RTx
where 1 ≤ NTx ≤ RTx. A transmit subarray is a subset of the transmit array consisting of
RTx/NTx contiguous rows. Similarly, a receive array consists of NRx subarrays, where NRx
can be any whole factor of RRx, where 1 ≤ NRx ≤ RRx. A receive subarray is a subset of
the receive array consisting of RRx/NRx contiguous rows. Concatenating these subarrays
will reproduce the original array.

The self-interference channel matrix between the transmit and receive arrays is denoted
Hsel f , where Hsel f ∈ CMTx×MRx . The uplink channel matrix is Hup ∈ CMRx×Kup , and the
downlink channel matrix is Hdown ∈ CMTx×Kdown .



Electronics 2022, 11, 59 5 of 14

The SI channel matrix between a transmit subarray and the receive array is Hsubi,all
∈

CMTx/NTx×MRx . Similarly, the SI channel matrix between a receive subarray and the transmit
array is Hsuball,j

∈ CMRx/NRx×MTx . The SI channel matrix between any two transmit and

receive subarrays is denoted Hsubi,j
∈ CMTx/NTx×MRx/NRx .

The channel matrix between the uplink clients and the receive array is Hup ∈ CKup×MRx .
The channel matrix between the uplink clients and a receive subarray is Hupj ∈ CKup×MRx/NRx .
The channel matrix between the transmit array and the downlink clients is Hdown ∈
CKdown×MTx . The channel matrix between a transmit subarray and the downlink clients is
Hdowni

∈ CKdown×MTx/NTx .
The vector of symbols transmitted by the transmit array is xdown ∈ CMTx . The vector

of symbols transmitted by the uplink clients is xup ∈ CKup .
The signal received at the receive array is:

yup = Hupxup + Hsel f xdown + zup, (1)

where zup ∈ CMRx is noise.
The signal received at the downlink clients is:

ydown = Hdownxdown + zdown, (2)

where zdown ∈ CKdown is noise. For ease of discussion, this model assumes negligible client
to client interference.

4. Algorithmic Implementation
4.1. Architectural Assumptions

The BS assumed in this paper requires hardware similar to a typical hybrid architecture,
but with the ability to control amplitude discretely between specific levels. In particular,
we have specified the number of those levels at various powers of 2, and their power
levels at equal divisions between zero and a maximum. Similar archetectures matching
this description exist [14,27,28], but with far fewer RF chains, and sometimes with different
connection choices between RF chains and antennas.

4.2. Algorithm Design

To compare digital and hybrid MU-MIMO performance, we choose SoftNull [13] as
the representative of leading fully digital techniques. In this section, we first describe the
key components of SoftNull and our proposed adaptation of SoftNull when applied to a
hybrid beamforming radio architecture. We refer to our proposed approach as Multi-User
Hybrid FD and denote it as M-HBFD.

4.2.1. Key Components of SoftNull

SoftNull is divided into two main stages: a standard MU-MIMO precoder (denoted
Pdown ∈ CDTx×Kdown ) which precodes signals between DTx effective antennas and Kdown
clients, and the SoftNull precoder (denoted Psel f ∈ CMTx×DTx ) which reduces SI by emu-
lating the beamforming ability of DTx effective antennas with MTx physical antennas. Let
sdown ∈ CKdown be the vector of symbols the BS sends to each of the Kdown downlink users.
Then, the transmitted vector of symbols is xdown = Psel f Pdownsdown.

The standard precoder Pdown requires no knowledge of the SoftNull precoder and can
be any standard precoder, such as zero-forcing. The SoftNull precoder Psel f reduces BS SI
while preserving DTx effective antennas by taking a singular value decomposition of the
SI matrix between all transmit and receive antennas (Hsel f ) and setting the (MTx − DTx)
highest correlated vectors to zero. This reduces the dimensionality of the transmit array to
DTx while reducing SI.

Although SoftNull was created from the perspective of trading transmit beamforming
for SI reduction, it is equally valid to apply the algorithm to a receive array for the purposes
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of trading receive beamforming for SI reduction. Then, DTx becomes DRx, downlink clients
become uplink clients, etc.

4.2.2. M-HBFD Design

We propose to create a viable algorithm for SI cancellation with an MU-MIMO hybrid
radio architecture at the BS in the following manner. First, we divide the BS antennas into
separate transmit and receive arrays of MTx and MRx antennas respectively, as in SoftNull
and described in our system definition. Without lack of generality, we describe implement-
ing the algorithm on the transmit array, but the algorithm could similarly be applied to
a receive array. We sort all RTx rows in the transmit array into NTx subarrays, and each
subarray uses a single RF chain to communicate with a single downlink client. For example,
if a 4 × 4 transmit array (MTx = 16, RTx = 4, CTx = 4) needed to communicate with two
downlink clients, there would be two 2x4 subarrays (NTx = 2) each communicating with
one client, and two total RF chains used for downlink transmission.

For each subarray, SoftNull is calculated specifically for that subarray. The SI matrix
used in these calculations, Hsubi,all

, is that between the subarray i and the receive array.
The total number of effective antennas for the transmit array are calculated as in SoftNull
and then divided equally among subarrays to get the number of effective antennas used for
each subarray SoftNull calculation. To extend the earlier example, in the case of MTx = 16
and NTx = 2, if DTx = 4, then each subarray i uses 2 effective antennas to calculate SoftNull,
and the singular value decomposition is taken from Hsubi,all

.
For each physical antenna, the corresponding entry in xdown is approximated to the

closest value achievable, dependent on the number of quantization bits in the architecture.
By organizing whole rows into subarrays, we ensure each transmit subarray has antennas
similar distances from the receive array. This arrangement helps ensure there is approx-
imately equal SI reduction power between subarrays. With this arrangement, we imply
equal importance of communication with each client.

An alternative approach to the one outlined above would be to simply take a discrete
approximation of SoftNull as applied on the whole transmit array for any number of
clients, without first subdividing the arrays. This approach is likely to produce higher
capacity, but is less flexible than subdividing the arrays. For example, whenever there is a
change in the location of a single downlink client, the entire transmit array’s beam must
be recalculated. Even on massive many-antenna arrays, this approach is likely to perform
worse with a high number of clients. It also raises questions of computational complexity
and requires a fully connected hybrid architecture.

When comparing the performance of M-HBFD against SoftNull, we do not first
subdivide the transmit or receive arrays before applying SoftNull. Despite our belief that
this will not scale well with the number of clients, we use it as a pessimistic standard when
evaluating the MU-MIMO potential of M-HBFD.

5. Data Collection

To perform our analysis, we collected real-world channel measurements with up to
32 antennas at the BS and 4 single-antenna clients.

The channel measurements, for BS self-interference, as well as BS/client communica-
tion, were collected using a chain of Skylark Wireless Iris radios with 2.4 GHz frontends
(Figure 3a), each Iris radio has two RF chains. The unique feature of these modular radios
is their ability to synchronize the clocks across all antennas, thus allowing relative time
from transmission to reception to be measured.

Each RF chain is attached to a dipole antenna (Figure 3b). These antennas represent
one of two things: a BS array arranged in a 4 × 8 rectangular pattern spaced at one-half
wavelength, or located one meter away in one of five zones equally splitting a 180 degree
arc to represent client devices, elevated at 30 degrees (see Figure 4). Dipole antennas in
a rectangular array as oriented in this setup may not represent the most useful radiation
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pattern for a BS; however, client antennas are elevated to stay within the radiation pattern
of each BS antenna and avoid occlusion.

Figure 3. (a) Our radio hardware, including Skylark Wireless Iris radios (1) and associated RF front
ends (2), antenna cable extensions (3), AC/DC power converter (4) and bus power converter (5),
and ethernet connections (6). (b) An example antenna layout. In this picture, the antennas are not yet
set in their exact test configuration.

Figure 4. Top-down representation of BS and client zones. Not drawn to scale. Diamonds indicate
approximate location of client antennas.

Channel measurements are taken by sending an LTS pilot sequence at 2.484 GHz
(WiFi channel 14) from each RF chain one at a time, while every other RF chain listens and
stores the raw IQ values in their buffers. The timing information from the synchronized
clocks is combined with the received power information from each RF chain to estimate
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the effective instantaneous channel state information for each pair of antennas. The radios
are set up in an indoor high-scattering environment. For each trial, we took the median of
30 observations, spaced over about one minute, as one channel measurement. This method
removed outliers while avoiding drifting channel measurements associated with our hard-
ware heating up over time. Custom control code was written in Python and originally
stemmed from existing open-source code [30]. This process was repeated to produce fifteen
series of channel measurements between all BS and client antennas.

6. Data Analysis

To compare the results of M-HBFD in different scenarios, we vary the BS array size,
the number of effective antennas used in SoftNull, and the number and location of clients
the BS communicates with simultaneously.

We compare M-HBFD against SoftNull on the metrics of total SI at the BS, total capacity
of all communication streams, and total capacity per RF chain used.

When varying array size, the same collected data is used for each trial. The full BS
array is comprised of a 4 × 4 transmit and a 4 × 4 receive array. To emulate a smaller BS,
the rearmost and sides of the 32-antenna full BS array are simply ignored, to leave an
18-antenna array (comprised of a 3 × 3 transmit and a 3 × 3 receive array) in the middle
towards the client antennas.

One of the variable inputs to SoftNull is the number of effective antennas, which is
directly correlated to beamforming gain. In our experiments, when varying the number of
effective antennas, we keep the total number of effective antennas the same for the transmit
or receive array as a whole for better comparison of algorithms. For M-HBFD, effective
antennas are evenly divided among subarrays. For ease of discussion, in this paper, we
characterize the effective antennas in both algorithms as “effective antennas per row”. Due
to the possible values for array size, in our experiments, the effective antennas per row
vary only between 1 and 2.

When varying the number of subarrays, or equivalently, number of clients in simulta-
neous communication, values are chosen intelligently to produce a constant whole number
of rows in each subarray given the sizes of our BS arrays.

When measuring SI, the recorded values are normalized by dividing by the norm
(2-norm) of the transmission weight vector to better compare across array variation. SI
is calculated based on the total sum received power above the noise floor at all receive
antennas, where only the transmission array is implementing SoftNull or M-HBFD, and the
receive array is not.

When measuring capacity, both the transmit and receive arrays implement SoftNull or
M-HBFD. The number of uplink clients matches the number of downlink clients, and the
related subdivision of the receive array matches the subdivision of the transmit array. Since
SI is now affected by both arrays, the effective SI can be different from the SI calculated as
described above, even when using the same measured SI values.

When calculating capacity per RF chain, the same measured capacity values are used
and then divided by the number of RF chains implied with each algorithm. In the case of
SoftNull, this number is the number of antennas in the entire array, either 32 or 18. In the
case of M-HBFD, this number is the number of subarrays (on both the transmit and receive
array combined), or equivalently, the number of clients in communication (both uplink
and downlink).

In both SI and capacity calculations, specific clients need to be chosen. For both uplink
and downlink, random clients are chosen, without repeating a choice, between all 15 trials.
Since there are only two uplink and two downlink client antennas per zone in each trial,
a maximum of two clients from the same zone can be selected to communicate with either
the transmit or receive array in any trial. In the case of capacity measurement, where
both uplink and downlink clients are chosen, uplink and downlink clients are chosen
independently, whereas, in the case of SI measurement only, downlink clients are chosen.
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We also compare the SI generated when transmitting to clients in different zones.
In this comparison, we vary array size and effective antennas but only communicate with
one client at a time, using the whole transmit array. One of the two downlink client
antennas in each zone was chosen at random for each trial.

7. Results and Analysis
7.1. Quantization

We first investigate the effect of the number of quantization bits on M-HBFD’s perfor-
mance. Figure 5 shows the change in total capacity as the value at each antenna is allowed
more and more possible values. For each number of quantization bits from 1–8 depicted,
each data point is the geometric mean of 15 trials broken down by array size, number of
subarrays, and number of effective antennas per row, for a total of 10 data points per level.

Figure 5. Effect of the number of quantization bits on the ratio of M-HBFD sum capacity rate
to SoftNull.

Although the number of quantization bits acceptable to use in each use case depends
on both hardware considerations, as well as accuracy requirements, to proceed with further
performance comparisons, we select 5 bits as the baseline level of quantization for M-HBFD.

7.2. Client Zones

The effect of the zone of a downlink client to its effect on SI compared to SoftNull is
depicted in Figure 6. Each data point is the geometric mean of 15 trials, using one downlink
antenna and the transmit array only, with one subarray. Zone 1 has a “flatter” angle more
toward the receive array side of the BS, while zone 5 is more toward the transmit side,
as shown in Figure 4.



Electronics 2022, 11, 59 10 of 14

Figure 6. Effect of client zone on M-HBFD’s SI compared to SoftNull. The total SI created at the BS by
M-HBFD is 15–25% higher than the SI generated by SoftNull.

There is a larger difference in SI when communicating in zones 1 and 2. This indicates
that M-HBFD shows weakness when beams are angled in the vicinity of the receive array.
Further, the SI is also relatively high when clients are in the opposite direction, in zone 5.
Finally, we observe that M-HBFD creates 15–25% higher SI at the BS compared to SoftNull.

7.3. Self-Interference

The effect of array size, number of clients, and number of effective antennas on SI
compared to SoftNull is shown in Figure 7. Each data point is the geometric mean of
15 trials.

Figure 7. Effect of array size (bottom label, and denoted by Tx/Rx Array Size row), number of
subarrays (middle label, and denoted by Subarrays row), and number of effective antennas per row
(top label, and denoted by DTx/DRx row) on SI compared to SoftNull.

SI in M-HBFD was higher than SoftNull in all cases, with values ranging from 6–29%
higher. The difference is smaller when using two effective antennas per row rather than
one, or when communicating with more clients simultaneously.

Even the maximum performance advantage for SoftNull is only 29%, which means
that a large amount of SI in our results is either easily canceled by both SoftNull and
M-HBFD, or un-cancellable by either.

Adding more effective antennas reduces SoftNull’s SI advantage. This indicates that
M-HBFD is successfully canceling a certain amount of SI and additional effective antennas
being repurposed from beamforming to SI cancellation would not be as useful. SoftNull,
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meanwhile, is more able to utilize the additional resources for additional SI cancellation,
and so performs better relative to M-HBFD with two effective antennas per row.

Increasing the number of clients (increasing the number of subarrays in M-HBFD)
decreases the difference in SI. This indicates MU-MIMO algorithms may reduce or eliminate
the performance gap with fully digital algorithms as BSs get larger and communicate with
more clients at once.

7.4. Capacity

The effect of array size, number of clients, and number of effective antennas on total
sum capacity compared to SoftNull is shown in Figure 8. Each data point is the geometric
mean of 15 trials. In all scenarios, the total capacity was within 15% of SoftNull.

In most array sizes and numbers of subarrays, using more effective antennas increased
the relative performance of M-HBFD compared to SoftNull. These results are similar to the
results for self-interference, but less pronounced. While we concluded above that SoftNull
was better able to utilize additional cancellation resources, note that, when communicating
with a single device per subarray, going from one effective antenna per row to two is
essentially doubling the directionality of the beamforming. Therefore, the disadvantage of
M-HBFD is muted after accounting for increases in capacity from beamforming gain.

On average, using the larger 4 × 4 transmit and receive arrays had a slightly positive
effect on the performance of M-HBFD compared to SoftNull.

Figure 8. Effect of array size ((bottom), denoted by Tx/Rx Array Size row), number of subarrays
((middle), denoted by Subarrays row), and number of effective antennas per row ((top), denoted by
DTx/DRx row) on capacity compared to SoftNull.

7.5. Capacity per RF Chain

The effect of array size, number of clients, and number of effective antennas on total
sum capacity compared to SoftNull is shown in Figure 9. Each data point is the geometric
mean of 15 trials. Note this is the same data as for our capacity comparison, but divided by
the number of RF chains. In all cases, M-HBFD performs at least twice as well as SoftNull
and, in the extreme case, achieves 14 times the capacity.
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Figure 9. Effect of array size ((bottom), denoted by Tx/Rx Array Size row), number of subarrays
((middle), denoted by Subarrays row), and number of effective antennas per row ((top), denoted by
DTx/DRx row) on capacity compared to SoftNull, normalized by number of RF chains used.

The advantage of our hybrid architecture MU-MIMO algorithm over fully digital
algorithms is properly emphasized with these results. SoftNull, which uses a full RF chain
for each antenna, is at a severe disadvantage to M-HBFD, which only uses a full RF chain
for each subarray.

M-HBFD’s performance gains diminish as the number of clients increases. However,
this effect is due to dividing the stable total capacity over an increasing number of RF chains
used. In the case of a 4x4 transmit and receive array with 4 subarrays each, M-HBFD still
achieves 3 times the capacity per RF chain. If the number of clients increased to the point
where the RF chains used by M-HBFD approached the number of antennas, we would
expect the performance of both algorithms to degrade, and the relative advantage may end
up reversing. However, using this many RF chains defeats the purpose of our assumed
architecture in the first place.

M-HBFD scales better with array size. In the case of one subarray, where the whole
transmit or receive array is used to communicate with one client each, going from an
18-antenna array to a 32-antenna array nearly doubles the number of RF chains used in
SoftNull but has no effect on the number used in M-HBFD, leading to a capacity rate per
RF chain for M-HBFD of almost two times.

8. Conclusions

In this paper, we conducted an experiment-based comparison between fully digital
and hybrid beamforming radio architectures for many-antenna FD wireless systems. We
designed a MU-MIMO hybrid architecture FD algorithm and implemented it and a lead-
ing digital architecture algorithm on programmable hardware and collected over-the-air
channel data to compare the performance of the two systems in terms of SI cancellation
and system capacity. We showed that the hybrid beamforming architecture achieves a
comparable SI and capacity rate to the leading fully digital solution, despite requiring fewer
RF chains, and decisively outperformed fully digital algorithms on a per-RF chain basis.
For our future work, we plan to evaluate these techniques in even larger many-antenna
BSs and apply similar experiments in low-scattering outdoor environments.
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BS base station
FD full-duplex
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