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Abstract

There is a rise in demand among machine learning researchers for powerful

computational resources to train complex machine learning models, e.g., deep learning

models. In order to train these models in a reasonable amount of time, the training

is often distributed among multiple machines; yet paying for such machines (either

through renting them on cloud data centers or building a local infrastructure) is costly.

DeepMarket attempts to reduce these costs by creating a marketplace that integrates

multiple computational resources over a distributed TensorFlow framework. Instead

of requiring users to rent expensive GPU/CPUs from a third-party cloud provider,

DeepMarket allows users to lend their edge computing resources to each other when

they are available. Such a marketplace, however, requires a credit mechanism that

ensures users receive resources in proportion to the resources they lend to others.

Moreover, DeepMarket must respect users’ needs to use their own resources and

the resulting limits on when resources can be lent to others. In this thesis, I present

the design and implementation of DeepMarket, an architecture that addresses these

challenges and allows users to securely lend and borrow computing resources. I

also present preliminary experimental evaluation results that show DeepMarket’s

performance, in terms of job completion time, is comparable to third-party cloud

providers. However, DeepMarket can achieve this performance with reduced cost and

increased data privacy.
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Chapter 1

Introduction

As deep learning proves its usefulness in an ever greater number of applications, there is a

rise in demand for faster and cheaper computational resources to manage and train ever more

complex learning-based models. Currently, there are two approaches to meet this demand.

One approach is to purchase computational resources, which requires a substantial upfront

investment that loses its value over time. Another approach is to rent computing resources

from cloud service providers. Cloud computing web services such as Amazon AWS [3],

Microsoft Azure [4], and Digital Ocean [5] are a few of the alternatives to use instead of

private/local computational resources. They are becoming popular as artificial intelligence

and machine learning fields become more and more utilized. However, the main caveat

of using these cloud platforms for training machine learning models is cost. For example,

training a typical language model with 10 GPUs takes 3 weeks and costs $1000 assuming

discounted Amazon Web Services (AWS) spot prices. As a solution to this problem, this

thesis introduces DeepMarket, which supports a hybrid cloud computing environment that

utilizes edge computing to train machine learning models at a significantly reduced cost.

DeepMarket benefits users in two ways. First, DeepMarket will reduce the distributed

computing costs by creating a marketplace where users lend each other their spare computa-

tional resources. Users can lend their resources to DeepMarket when they don’t need them

and then supplement them with other people’s machine when they have a need. This reduces
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upfront investment costs by allowing users to purchase fewer resources and supplement

them with others’ machines, and it eliminates the need to pay a cloud provider. Second,

DeepMarket is an open-source and fully programmable research infrastructure that allows

experimentation in other domains such as edge computing and pricing, among others.

DeepMarket leverages a shared economy of available computational resources, similar

to Uber or Airbnb. As mentioned, users can participate in the online marketplace by lending

their private and idle resources to each other through DeepMarket. By sharing their compu-

tational resources, users can earn credits which they can use later to borrow others’ available

resources and train their machine learning models. In this manner, researchers could use

resources on DeepMarket for their computations possibly for free by sharing their available

resources with others. Also, DeepMarket has a price generator mechanism dependent on

the job execution time and the available/selected resources. With this, DeepMarket can

proactively calculate how many credits a resource owner will get and how many credits a

user should expect to spend on his job. Also, DeepMarket uses a client-server architecture

where the client is a local application, thus allowing users to easily set up their personal

machines as resources. Because DeepMarket is inherently distributed, targeting users’

computers for computation requires the existence of a distributed resource manager, and in

this thesis, I have primarily leveraged the Apache Spark distributed resource manager.

This idea of DeepMarket is mainly to train deep learning models at the edge and in

a distributed manner. As mentioned before, since exploiting computational resources at

the edge of the network has several advantages over using cloud computing resources, this

idea is getting more attention these days. There are a few recent startups [6, 7, 8, 9] and

academic research [10, 11] which proposed similar ideas to DeepMarket. DeepMarket

can be specialized among these research works and startups since it relies on the sharing

economy with a credit-based pricing algorithm and marketizes the execution of machine

learning tasks at the same time as providing a broker service for distributed TensorFlow

jobs. Also, as DeepMarket aims to provide distributed computing service on heterogeneous
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resources and networks, it will allow a wide range of users to join the marketplace.

DeepMarket mainly has two research capabilities. It provides massive amounts of

resources for machine learning researchers to train their models at a much-reduced cost.

These researchers only need computational power, so they have an incentive to lend or

borrow resources to DeepMarket due to the reduced cost. Also, they can act as real test users

who respond to dynamic pricing conditions. In addition, DeepMarket provides a controllable

edge for a variety of other researchers to run experiments with such real users. For example,

researchers can run experiments on network economics and resource scheduling by testing

their new pricing algorithms and by designing new resources to job mapping algorithms.

DeepMarket is developed in collaboration with other NeWSLab (Networks and Wireless

Systems Lab) students at Portland State University (PSU). I participated in this project

as a software developer and a system performance monitor. Specifically, I modeled the

entire database with other team members’ feedback and worked on the database creation,

integration, server-side API development, and unit test cases development in the early stages

of DeepMarket. Currently, I am researching other distributed computing tools for stability

and improvement of the DeepMarket platform and focusing on testing and evaluating the

performance of DeepMarket.

In this thesis, I will present and discuss the design and preliminary experimental evalua-

tion of DeepMarket. In particular, this thesis will present the architecture, implementation,

and benefits of DeepMarket, and introduce its graphical user interface (PLUTO), the ser-

vice module, and the executor module. Also, I will present preliminary experiments that

characterize the performance of DeepMarket.

The contents of this thesis are organized as follows. I start this thesis with background

information on DeepMarket explaining why Apache Spark, Hadoop Distributed File System,

and TensorFlowOnSpark are the key components of DeepMarket and where they are used.

In addition, I address the difference between cloud computing and edge computing. In

chapter 3, I introduce the architecture design of DeepMarket with details of each of the
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three modules; PLUTO, the service module, and the executor module. In chapter 4, my

experiments and the corresponding results will be presented. The first 2 experiments will be

mainly focused on the performance comparison between cloud computing and DeepMarket,

and the preliminary results will show that DeepMarket’s job completion time on edge

resources is comparable to running jobs on cloud. The next 2 experiments will evaluate

DeepMarket’s job execution performance in presence of dynamic network traffic.
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Chapter 2

Background

2.1 Cloud Computing

Cloud computing is the most popular distributed computing model where a number of

servers are remotely connected to a centralized data center [12]. Cloud computing services

are getting more attention since it is convenient for researchers and other users to get remote

and virtualized computing resources without purchasing local computing machines on site.

Examples of the most sought after cloud computing platforms are Amazon Web Services,

Microsoft Azure, and Digital Ocean. Most of the cloud computing services are based on

virtualization techniques which are for sharing and utilizing physical computing resources

remotely. With this, users’ local resources can just request cloud computing resources and

utilize the virtualized computing resources temporarily as long as they would like to use it.

Local machines need only request these kinds of cloud computing service [12]. However,

cloud computing has several main disadvantages such as possible long latency on WAN

connections and longer execution time when processing a large data set [13].

2.2 Edge Computing

Edge computing performs computation at the edge of network which is at the proximity of

data sources [1]. Therefore, edge computing supports decentralized distributed computing
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Figure 2.1: Edge Computing Paradigm [1]

with local machines at the edge which is close to users and data sources, so it doesn’t have

to use data center storage or extra network expense [13]. With this, edge resources and

network can perform computing offloading, data caching/storage, data processing, privacy

protection, and others by having data storage closer to the distributed nodes as shown in

Figure 2.1 [1]. In the other words, edge devices can be both data consumer and data producer,

and this allows computation partially or completely on distributed nodes [1]. Compared to

cloud computing, this can minimize the disadvantages of cloud computing including the

maintenance cost of the data center, network cost, and others. Also, since edge computing

does not upload or process private data on the cloud, physical data collected on the network

at the edge stays private, and this can protect user privacy. However, this computing method

also has disadvantages. First, edge computing needs to have a certain amount of locally

available computing machines which are sometimes hard to obtain for certain use cases.

Second, even though users have resources, the network configuration and connection could

be difficult to set up if the users are not experts or researchers. Third, edge computing could

pose security risks as edge devices typically have lower computational power (e.g., may not

be able to fully implement cryptography/encryption algorithms).
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2.3 Apache Spark

Apache Spark [14] is a cluster computing framework with strong scalability and fault

tolerance mainly by the abstraction called resilient distributed dataset (RDD) [15]. RDD

is a read-only collection of a partitioned object from a dataset for parallel operations [15].

Not only does this support Spark to have scalability by distributing a big amount of data to

partitions, but this also helps Spark with its fault tolerance by caching this RDD in memory

across nodes to reuse or rebuild the partition whenever there are any corruptions in the

middle of distributed execution [15]. This is an important factor for Spark in distributed

computing because there could be a lot of issues in the middle of the connection between

nodes in a distributed computing environment, and this RDD can solve these problems. For

example, when a node gets overloaded while processing data, the cluster manager should

find out and be able to perform the computing again without losing the already processed

data. Also, Spark can be a resource manager and cluster manager with a standalone mode,

and it is flexible enough to use other resource and cluster managers such as Hadoop Yarn and

Apache Mesos. In addition, Spark can handle a larger workload than the total size of memory

in a cluster by dividing working sets and performing in-memory computation [16]. Like this,

Spark can adjust the size of working sets, so when a straggler task gets detected in the node

of a cluster, Spark can re-schedule smaller workloads on the node and improve the overall

performance. Lastly, Spark allows DeepMarket to be able to be a hybrid cloud platform since

it is easy to be installed and configured in virtual machines by cloud computing services, so

DeepMarket with Spark can run applications with the combination of resources from local

and cloud computing services.

2.4 Hadoop Distributed File System

DeepMarket mainly uses the Hadoop Distributed File System (HDFS) [17] as its distributed

file system, so it can manage and allow multiple resources to store and process a large
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amount of data across clusters [18]. HDFS could be very economical since it can be used

with low-cost resources, and it is suitable for applications with a massive amount of data [19].

Also, to execute applications in a cluster with multiple resources/workers, the data should

be easily accessible to all of the nodes in the cluster, and the file system should be reliable,

scalable, and fault tolerant. HDFS can meet these requirements with its user-level file

system with high portability, so it has been chosen to be used in DeepMarket. Also, to

execute applications in a cluster with multiple resources/workers, the data should be easily

accessible to all of the nodes in the cluster, and the file system should be reliable, scalable,

and fault tolerant. HDFS can meet these requirements with its user-level file system with

high portability, so it has been chosen to be used in DeepMarket. HDFS consists of a name

node and data nodes in a cluster. The name node of HDFS divides data into smaller data

blocks and distributes them on the data nodes of HDFS, and HDFS maintains a directory

tree to keep track of the locations of data blocks. [18]. In other words, through this name

node and the directory tree, HDFS can manage and utilize each node’s file system, so it

can have high portability and scalability with a smaller fraction of data blocks on each

node in a cluster. Also, HDFS is reliable and fault tolerant due to its re-replication system.

Distributed computing programs can have a number of problems such as a bad disk in one

of the workers/resources, nodes becoming unavailable, and a corrupt or an increased part

of the replication of a file [19]. HDFS can handle these problems with the communication

between a name node and data nodes and making re-replication when it is needed, so the

distributed file system can stay reliable and fault tolerant [19]. Due to all these reasons,

DeepMarket uses HDFS to get and process input source data and to save the output data

after executing distributed computing jobs.
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2.5 TensorflowOnSpark

TensorFlowOnSpark is a framework developed by Yahoo to support distributed TensorFlow

execution on Apache Spark and Apache Hadoop. Since the current version of DeepMarket

uses HDFS and Spark, TensorFlowOnSpark is an ideal framework to use for executing

distributed TensorFlow machine learning programs on DeepMarket, and it is included in the

executor module of DeepMarket architecture as shown in Figure 3.2. TensorFlowOnSpark

is designed to be used in either on cloud or on-premise resources like CPU and GPU, and it

can be utilized with any dataset on HDFS and other data sources pulled and pushed from

Apache Spark and TensorFlow [20]. Also, it is easy to integrate with other libraries or tools

such as Keras and TensorBoard for TensorFlow distributed execution.
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Chapter 3

Architecture

3.1 DeepMarket Platform

The DeepMarket platform consists of DeepMarket’s software and hardware infrastructure.

The main goal of this platform is to create an ecosystem around the DeepMarket infrastruc-

ture by bringing together a diverse group of users (e.g., machine learning users who need

computational power and users who leverage DeepMarket’s controllable edge).

3.1.1 Hardware Infrastructure

The hardware infrastructure of DeepMarket is designed to be expandable by adding a variety

of computational resources to DeepMarket’s network. Currently, this DeepMarket’s hard-

ware infrastructure is developed and located at Portland State University, and it is managed

by our team at the Networks and Wireless Systems Lab. Therefore, multiple individuals

and groups at PSU can rent and lend a variety of computational resources to DeepMarket’s

network, and they can participate in this project by acting as users/programmers and ex-

panding this hardware infrastructure. As shown in Figure 3.1, the DeepMarket’s hardware

infrastructure can be expanded to include a variety of hardware infrastructure at different

locations, and we are planning to expand our hardware infrastructure network to include

other universities by the end of 2020.
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Figure 3.1: DeepMarket Hardware Infrastructure

3.1.2 Software Infrastructure

There are a variety of useful existing software which can be added and developed on top

of DeepMarket’s open source software infrastructure. For example, Horovod [21], Tensor-

FlorOnSpark [22], and MLib [23] are possible frameworks to support parallel processing

and machine learning programs. Also, HDFS [17] and IPFS [24] have reliable fault-tolerant

data management systems, and Apache Spark [14], Hadoop Yarn [25], Kubernetes [26], and

Apache Mesos [27] are cluster management systems which are essential to be used with

distributed computing platforms. However, a key missing point in all these frameworks is

that architectures are tailored towards data centers. The unique enabler of DeepMarket’s

software infrastructure is to extend the architecture to edge/fog. For this, DeepMarket is

built on top of Apache Spark as our cluster management system, TensorFlowOnSpark as

our ML and parallel processing engines, and HDFS as our file management system.

3.2 High Level Architecture Design

DeepMarket is designed to be an open source application for the scalability and flexibility

of the marketplace, so users can easily submit their jobs with a massive amount of data

and share their resources with other users. In addition, DeepMarket needs to be secure

and fault tolerant for the reliability and privacy matters for users. For these reasons, the

current version of DeepMarket’s architecture mainly relies on the Apache Spark and Hadoop
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distributed file system known as HDFS. With this basis, DeepMarket’s architecture consists

of three modules as shown in Figure 3.2.

Figure 3.2: DeepMarket High Level Architecture Design

The first module, PLUTO, is a simple graphical user interface of DeepMarket. PLUTO’s

main function is to display the GUI that detail the dashboard, resources, and jobs with its

pricing options. The second module is called the services module which links users to the

master server, which enables DeepMarket to perform job submissions, update job status,

generate job price, and do other general services. The third and final piece is the executor

module which takes the submitted data in order to execute and schedule the jobs. This

executor module is based on the features from both Apache Spark and Hadoop distributed

file systems as well as TensorFlowOnSpark library. These three modules interact with each

other as shown in Figure 3.2.

Overall, users can register their accounts and resources by installing PLUTO on their

machines, and throughout the Internet, a user can submit and share their machine/resources

in the online marketplace to get credits which can, in turn, be used for computing jobs.
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When the jobs are submitted and resources are shared by the user, all of the information will

be updated to the master server, and the resources will be evaluated in order to exchange

their values. Finally, in the executor module, Spark will use a possible resource manager

and the Hadoop distributed file system to execute a job. How these three modules work

and integrate with one another is a complex process, so this will be expanded upon in the

following sections.

3.2.1 PLUTO

Figure 3.3: PLUTO Login User Interface

- To be active in the DeepMarket marketplace, users should install the PLUTO GUI on their

machines. PLUTO allows users to easily access the marketplace to borrow and/or lend their

resource, and exchange their credits by DeepMarket’s pricing mechanism. PLUTO will

initially ask users to register or log into the application as shown in Figure 3.3, but apart

from that, PLUTO has only three major tabs. The first tab is the dashboard which can be

seen in Figure 3.4. This tab’s main function is to summarize the user’s activity including

his/her job status. The job status has three varieties which are running, finished, or panic.
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Running and finished are self-explanatory while the panic status means that the job has been

stopped for several reasons such as poor connectivity to the master server, poor conditions

of resources or that the job has been aborted.

CREDIT: 15

Good Morning, Sam

Here are some details about resources / jobs: 
5 resources are running, and 2 are in panic mode. 
3 jobs are finished, 2 jobs are running,  
and 0 are in panic mode.

Total Balance: 15 credits

Estimate profit: 
(within next 24 hrs)

+ 30 credits
Estimate cost: 
(within next 24 hrs)

 - 20 credits

Past 30 days Cost History
JOB302874 Jan 14, 3 Hrs - 15 credits
JOB306729 Jan 15, 8 Hrs - 43 credits
JOB303423 Jan 15, 7 Hrs - 23 credits

Past 30 days Profit History
MAC301823 Jan 14, 3 Hrs + 15 credits
MAC301863 Jan 15, 1 Hrs   + 2 credits

PLUTO

Dashboard

Resources

Jobs

Figure 3.4: PLUTO Dashboard Tab

The second tab is the “Job Tab” which includes two sub tabs, “Add Jobs” and “Jobs List”

which are shown in Figure 3.5. Using the “Add Jobs” tab, users can estimate how much their

jobs will cost and adjust the price. There are 4 of the 6-hour time slots with difference prices,

and users can set the time when they want to run a job. Users can then check available

resources and select the number of workers and cores, the memory configuration, and the

path to the source and input file needed to execute the job. These two paths will be passed

to the service and executor modules to be saved in the Hadoop distributed file system, so

they can be computed in a distributed manner during the selected time slot. The information

submitted through this “Job Tab” will eventually get to the service module to book a job

with a certain time slot, and the service module will then calculate the cost corresponding to

the user’s choice of the number of CPU/GPU, RAM, and Disk. For example, in figure 3.6,
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PLUTO

Dashboard

Resources

Jobs

Workers #: Cores #: Memory:

Source file:

Input file:

SUBMIT

Job Submission

Disk:
Memory:

GPU:
CPU:
Time 6 AM - 12 PM

1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

12 AM - 6 AM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

12 PM - 6 PM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

6 PM - 12 AM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

Pricing Per Time Slot

CPU #: 12
GPU #: 2
Memory: 24 GB
Disk: 40 GB

Available  
Resources

Add Jobs Jobs List

CREDIT: 15

Figure 3.5: PLUTO “Add Job” Tab

Figure 3.6: An Example of Job Submission

PLUTO is asking a user if the price and the time when the job will be running is acceptable

before actually submitting the job. Also, they can check their job list on the “Jobs List” tab

which shows the number of workers, the number of cores, memory, status (e.g., scheduled,

active, failed, or finished), and the logs with a job’s identification number.

The third tab is the “Resource Tab” where users can verify their machine’s configuration



19

CREDIT: 15

Automated Price Offering Price: 0 credit/Hr SUBMIT

Resource Submission

EVALUATERAM (GB):Cores #:

CPUs/GPUs #: Machine Name: 

Resource Planning

Machine Configuration
Cores #: 4 RAM: 4 GBCPU: 8 GB

IP Address: VERIFY

Resource Verification

Add Resources Resources List
Dashboard

Resources

Jobs

PLUTO

Figure 3.7: PLUTO “Add Resources” Tab

and check if they can lend their own machines and earn credits for DeepMarket. Like the

“Job Tab”, this tab has two sub tabs, the “Add Resources” and “Resources List” tabs as shown

in Figure 3.7. The “Add Resource” tab provides four functions for users. First, users should

insert the machine’s IP address to verify their ownership and configuration. If the machine

is connected to DeepMarket remotely, users additionally need to validate ownership by

providing the credentials to PLUTO. Second, when the machine’s configuration is checked

and shown to the user, he/she can choose how much memory, CPU/GPU, and cores they

would like to lend to DeepMarket. Then, PLUTO checks if the part users want to lend is

valid and available. Third, it calculates the credits they can earn by lending the machine

through the DeepMarket’s credit system.

Lastly, users can add their resources to DeepMarket, and it will be shown on the

“Resources List” tab. The “Resources List” tab shows the list of the machines which the user
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Figure 3.8: PLUTO “Resources List” Tab

lent to the DeepMarket, and it shows the detailed information such as the machine’s name,

IP address, the number of CPUs/GPUs and cores, RAM, price, and the current status if the

resource is online or not. This tab also includes the function to search, edit, and remove the

resources from DeepMarket as shown in Figure 3.8.

3.2.2 Service Module

The Service Module is located in the driver/master machine of DeepMarket and interacts

with PLUTOs on the internet as shown in Figure 3.2. This service module manages and

updates DeepMarket’s entire MongoDB database through Representational State Transfer

Application Programming Interface known as REST API Server, so the user, job, and

resource information can be updated in a short time to all of the machines with the PLUTOs

on the Internet.

In other words, when users/jobs/resources information is passed to the service module

for any of the DeepMarket services, this service module updates the database and PLUTO

application with the new data and transfers the job submission to the executor module to

run a distributed computing TensorFlow program. Also, this module has a price generator
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which updates the price every 12 am, Pacific time (GMT-7:00). It generates the prices for

resources depending on different time slots every day and updates the new price on the job

tab on PLUTO. This price generator is still under research, so it can produce a cheaper price

for the time slot when most of resources are idle and assign a higher price for the time when

the most of users want to run a job or when the most of the resources are busy based on the

data from previous days.

Lastly, this service module updates the job’s status. When a job is submitted, PLUTO

sends the scheduled job’s information to the server, and when it’s the destinated time for the

job execution, the server sends the job information to Apache Spark driver, so Spark can

execute the job and change the job’s status to be “Active”. Whenever the job status changes

to “Failed” or “Finished”, the Spark driver from the executor module asks the server on the

service module to update the changed status information on its database and PLUTOs.

3.2.3 Executor Module

Similar to the service module, the executor module is located in the driver/master machine

mainly to execute submitted jobs with other resources/workers. This executor module uses

Apache Spark, Hadoop Distributed File System (HDFS), TensorFlow, and TensorFlowOn-

Sprak to execute distributed computing jobs. In detail, Apache Spark is a resource manager,

so it can manage and schedule resources while running distributed programs by Tensor-

Flow and TensorFlowOnSpark framework. Also, HDFS is the distributed file system of

DeepMarket, so other resources/workers can also access the massive amount of data needed

to compute jobs in a distributed manner. Overall, this module interacts with the service

module and PLUTOs for scheduling resources, updating jobs/resources status information,

and managing the input and output data files.
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3.2.4 Sequence of Actions in DeepMarket

Figure 3.9: Sequence of Actions in DeepMarket

Figure 3.9 shows the sequence of actions in DeepMarket architecture. As previously

mentioned, users can access and exploit DeepMarket’s infrastructure through the interaction

between the PLUTO GUI, the service module, and the executor module. As shown in

Figure 3.9, users first need to submit their jobs and resources to the service module on the

edge network from their own device. From there, the service module schedules their jobs

mapping with available resources during the assigned time slot. Then, the executor module

gets the information and executes the job. After completing the job, the executor module

sends the result and other information to the service module, so it can compute the price and

credits that will be used and update the user account information on the database. Lastly,

after the service module finishes and sends the pricing information to the user device, they

can receive a new credit balance with the job execution done.
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Chapter 4

Experimental Evaluation

4.1 The MNIST Dataset

Figure 4.1: Images from the MNIST Test Dataset [2]

All the experimental evaluations in this chapter used the MNIST dataset. The MNIST dataset

stands for Modified National Institute of Standards and Technology database [2]. It is a

large database of handwritten digits as shown in Figure 4.1, and it is mainly used for training

various image processing systems as well as a basic machine learning program example [2].

In this chapter, experiments are carried out to evaluate the impact of distributing jobs

with multiple nodes in different environments, and this MNIST dataset is used to measure

its training completion time with different setups of clusters. The accuracy rate was not

measured since all the tests train a fixed data model for a given number of iterations, and the
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variables of the experiments didn’t affect the accuracy.

4.2 Experiment Objectives

There are 5 main experiments in this chapter. These experiments characterize how resources

(e.g., conventional laptops, virtual machines in a data center), their locality, and other

network traffic would affect the “Job Completion Time”. This “Job Completion Time” is

the time it takes to train a fixed model for a given number of epochs. In the first experiment,

I wanted to test if DeepMarket would actually be able to improve the performance of a

distributed machine learning program by adding more workers to the cluster. In the second

experiment, I wanted to see how the locality of machines can affect the performance of

distributed computing programs. In the third experiment, I compared the performance

of distributed computing on the cloud and on the edge with a LAN Wi-Fi connection.

Additionally, I carried an experiment to verify if adding only a fraction of a resource to a

cluster could enhance the performance of distributed computing. In the fourth experiment, I

tested the impact of the network traffic from everyday life to the performance of distributed

computing in a cluster from DeepMarket. In the last experiment, I wanted to test the impact

of uncontrolled traffic in a wireless edge environment on DeepMarket’s performance.

4.3 Resource Configurations

In this chapter, there are three main different resource configurations. The first one is “Local

LAN” configuration. This is a LAN setup in our lab at Portland State University or my

apartment. The resources are 3 conventional laptops, and they are all connected to the same

LAN Wi-Fi network. The second one is “Single DC”. In this set up, the server and resources

are computers from digital Ocean, and all machines are located in a single data center in

San Francisco. The third one is “Multi-DC”. In this setup, the server and resources are

computers rented from Digital Ocean, and the resources belong to different data centers in
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France, India, London, New York, and San Francisco.

4.4 Distributed Computing with Different Numbers of Workers

4.4.1 Distributed Computing on the Cloud with Different Numbers of Workers from the

Different Data Centers

Table 4.1: Machine Configurations for the Distributed Computing Test on the Cloud with
Different Numbers of Workers from the Different Data Centers

In this section, I set up 7 different machines as workers in a cluster which are from 5

different cities around the world, and this experiment was to see how the number of workers

and the locality of workers would affect the performance of distributed computing. The

detailed configurations of the machines are shown in Table 4.1. The server and resources are

computers rented from Digital Ocean [5], and the resources belong to different data centers,

and the prices are also stated in Table 4.1. The TensorFlowOnSpark MNIST example

program [22] I executed for this experiment trains the MNIST dataset in a distributed

computing environment, and I used the Hadoop Distributed File System and Apache Spark

standalone cluster. To generate a significant difference as the number of workers increases,

the result is the training completion time with 100 epochs, and each worker is provided

with only 2GB of RAM and 1 core/CPU. The average completion times with different

numbers of machines/workers are shown in Figure 4.2. Through this experiment, I wanted

to characterize the improvement in DeepMarket’s performance as more workers are added
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to the cluster. As expected, the job completion time decreased as the number of workers

increased. It shows that, as DeepMarket’s adoption increases, it becomes feasible for users

to borrow many resources simultaneously, significantly decreasing the job completion time.

Therefore, we can see that the performance of distributed computing can be improved by

adding more resources/workers to the cluster.

Figure 4.2: Training Time Result of the Distributed Computing on the Cloud with Different
Numbers of Workers from the Different Data Centers

4.4.2 Distributed Computing on the Cloud with Different Numbers of Workers from the

Same Data Center

Table 4.2: Machine Configurations for the Distributed Computing Test on the Cloud with
Different Numbers of Workers from the Same Data Center

The experiments in this section are the same as the previous except where the workers are

located. In contrast, all the workers are in the same region in San Francisco in the United

States. The configurations of the machines are shown in Table 4.2. The average completion

times of this experiment with different numbers of workers are shown in Figure 4.3. Similar
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Figure 4.3: Training Time Result of the Distributed Computing on the Cloud with Different
Numbers of Workers from the Same Data Center

to the previous experiment, we can see that a larger number of machines can improve the

performance of distributed computing applications.

4.4.3 Comparison between the Distributed Computing on the Cloud with the Different Data

Centers and with the Same Data Center

Figure 4.4: Training Time Result of the Comparison between the Distributed Computing on
the Cloud with the Different Data Centers and with the Same Data Center

The previous two experiments clearly show the different performance between when the

machines are located in different data centers and in the same data center, and it is presented
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in Figure 4.4. The main variable I made in these experiments is the geographical location of

the data centers where the Digital Ocean cloud service lends the worker machines. When

the data center of workers are located in multiple cities and far away from each other, the

training completion time is longer than the training time with the machines from a single

data center. This shows that DeepMarket will be able to improve the performance of the

distributed computing by connecting and recommending closer users’ resources together

into a cluster.

4.5 Distributed Computing in a Local Cluster on LAN Wi-Fi Connection

4.5.1 Distributed Computing in a Local Cluster on a LAN Wi-Fi Connection with Different

Sizes of RAM

Table 4.3: Machine Configurations for the Distributed Computing Test in a Local Cluster on
a LAN Wi-Fi Connection with Different Numbers of Workers

The experiment in this second section was set up in our lab at PSU. The configurations of

the physical machines are shown in Table 4.3. I used three Ubuntu machines in the lab, and

all laptops were connected to the same Wi-Fi network. Each machine lent only 1GB RAM

and 1 CPU core to a cluster. Similar to the previous experiments, the MNIST example’s

training completion time was measured with 5, 10, and 100 epochs. This experiment was

conducted to see how the number of training iteration or the workload of the job will affect

the performance. Also, this experiment was repeated with a larger size of RAM, 2GB, to

verify if adding only a fraction of a resource (e.g., 1 CPU core out of 4 CPU cores) to a

cluster could improve the performance of DeepMarket. The result is shown in Table 4.4.
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It shows that, as the number of the epoch increase, the training completion time linearly

increases. Also, we can see that adding 1 GB of RAM to a cluster also improved the

performance of training time. The training completion time was shortened by 80 minutes

when it was with 100 epochs by adding 1 GB of RAM. The marginal gain in performance

explicates the benefit in fractional resource lending/borrowing, and it also confirms that

DeepMarket can successfully leverage even a fraction of resource.

Table 4.4: Training Time Result of the Distributed Computing in a Local Cluster on a LAN
Wi-Fi Connection with Different Sizes of RAM

4.5.2 Comparison between the Distributed Computing in a Local Cluster on LAN Wi-Fi

Connection and in a Cluster on the Cloud

Figure 4.5: Training Time Result of the Comparison between the Distributed Computing in
a Local Cluster on a LAN Wi-Fi Connection and in a Cluster on the Cloud with the Same
and Different Data Centers

This section compares all of the averages job completion time results from the previous

experiment setups as shown in Figure 4.5. All of these experiments were conducted with 3

worker machines, and each machine lent only 1 CPU core and 2 GB RAM to a cluster across
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three schemes; “Multi-DC”, “Single-DC”, and “Lab LAN”. The “Multi-DC” result with

different data centers has the worst performance, and the “Single-DC” result with a single

data center has the best performance. It was unexpected that the “Lab LAN” result from our

PSU lab with wireless LAN Wi-Fi connection didn’t outperform the “Single-DC” result with

a single data center. However, this still shows that “Lab LAN” experiment’s performance was

comparable to the performance with data center based architectures because it outperformed

the “Multi-DC” result. Also, since these results didn’t include the time to transfer the input

source file and retrieve the output result, it can’t conclude that cloud computing with a single

data center can outperform distributed computing on the edge. As proven in [1] and [28],

distributed computing at the edge reduces the network latency between user and data center

since it offloads its computation at the edge, so it can have better performance than cloud

computing services.

4.6 Experiments with Competing Network Traffic

Table 4.5: Machine Configurations for the Distributed Computing Experiments with Com-
peting Network Traffic

In this section, I wanted to verify the impact of competing traffic on DeepMarket perfor-

mance. Distributed computing incurs message passing among worker nodes, which may

happen through wireless communication in an edge environment, so I wanted to see if the

performance on DeepMarket could be interfered with by other competing wireless network

traffic. For example, competing network traffic can be generated and cause some interference

on the performance of DeepMarket when a worker machine is also downloading YouTube
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videos at the same time as computing distributed programs. Also, it can happen when

a separate non-worker machine is using the same wireless LAN Wi-Fi connectivity with

worker machines and generates heavy competing traffic. For the following two subsections,

I conducted the same test measuring the MNIST training completion time as the previous

experiments, but I also generated other competing network traffic at the same time by turning

on a live streaming radio program or a YouTube video. The configurations of the machines

are shown in Table 4.5. For this section, I used 3 worker machines, each lending only 1 CPU

core and 2GB of RAM, to execute the MNIST example program. I operated all of the tests

in this section with the same wireless Wi-Fi LAN connectivity in my apartment, and all of

three physical worker machines were located in my apartment as well.

4.6.1 Distributed Computing on a LAN Wi-Fi Connection with Competing Network Traffic

from Live Streaming Radio

Table 4.6: Result of the Distributed Computing Test on a LAN Wi-Fi Connection with
Competing Network Traffic from Live Streaming Radio

The experiment I conducted in this section was with live streaming radio traffic. I used an

online website streaming real-time live radio programs in Portland, and I turned on a radio

program on a separate machine or on worker machines during the experiments. In Table 4.6,

the results are shown with the detailed information. First, I turned on a radio program on a

separate machine to generate radio streaming traffic, separately from the master and worker
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machines. The results are shown in the second row of Table 4.6. After that, I executed

the same test generating radio traffic on worker machines. The third row shows the job

completion time when generating the radio traffic on only a worker/master machine. The

fourth and last rows show the tests results having radio traffic on two and all of the three

worker machines.

Figure 4.6: Training Time Result of the Distributed Computing Test on a LAN Wi-Fi
Connection with Competing Network Traffic from Live Streaming Radio

Figure 4.7: Timeout Result of the Distributed Computing Test on a LAN Wi-Fi Connection
with Competing Network Traffic from Live Streaming Radio

Also, I calculated the average out of the 5 test results for each experiment to create the

graphs in Figures 4.6 and 4.7. Figure 4.6 shows the average of the training time results, and it

presents that the network traffic on a separate machine almost doesn’t cause any interference

to the performance of computation since it has nearly the same result as the average training

time when there was no competing traffic. However, generating radio network traffic on
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worker machines made a slight influence on the training completion time. It increased as

the number of workers having live radio traffic increased. There is another graph with the

average timeout results in Figure 4.7. As expected, the number of timeouts increased as the

number of workers with radio network traffic increased. Timeout is a warning provided by

TensorFlowOnSpark. According to TensorFlowOnSpark, it happens when it delays more

than 10 minutes while feeding partition due to a variety of reasons. In other words, when

a timeout occurred, this meant it took more than 10 minutes to process RDD (resilient

distributed dataset) partition to other nodes via the executor’s multiprocessing manager. It

is just a warning, and there was no problem or error to finish training the program. When

it happens the executor’s multiprocessing manager tries feeding the part of partition with

another node again and finishes the partitioned task. Users can manually change the duration

of timeout to longer than 10 minutes if needed.

4.6.2 Distributed Computing on a LAN Wi-Fi Connection with Competing Network Traffic

from YouTube Video

Table 4.7: Result of the Distributed Computing Test on a LAN Wi-Fi Connection with
Competing Network Traffic from YouTube Video

In this section, I conducted the same experiments as the previous section, but with generating

YouTube video traffic instead of streaming live radio traffic on worker/master machines or a

separate machine. Table 4.7 shows the results. Similar to the radio experiment results, the
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training time and the number of timeouts increased as the number of machines with Youtube

video traffic increases. The average results are presented in Figures 4.8 and 4.9. These

Figures show a slightly different trend when YouTube traffic was generated on a separate

machine compared to the previous experiments. As shown in Figure 4.8, the training time

with Youtube traffic on a separate machine took longer than the training time without any

traffic. Also, the result generated with YouTube video traffic on a separate machine is nearly

the same as the result generated with YouTube video traffic on a worker/master machine.

Except this, the overall trend of increasing training time as the volume of traffic increases

was the same.

Figure 4.8: Training Time Result of the Distributed Computing Test on a LAN Wi-Fi
Connection with Competing Network Traffic from YouTube Video

Figure 4.9: Timeout Result of the Distributed Computing Test on a LAN Wi-Fi Connection
with Competing Network Traffic from YouTube Video
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4.6.3 Comparison between the Distributed Computing on a LAN Wi-Fi Connection with

Competing Network Traffic from YouTube Video and from Live Streaming Radio

Figure 4.10: Training Time Result of the Comparison between the Distributed Computing
on a LAN Wi-Fi Connection with Competing Network Traffic from YouTube Video and
from Live Streaming Radio

Figure 4.11: Timeout Result of the Comparison between the Distributed Computing on a
LAN Wi-Fi Connection with Competing Network Traffic from YouTube Video and from
Live Streaming Radio

To summarize, I compared the previous results with live streaming radio traffic and YouTube

video traffic to see how different impact they would have on the performance of DeepMarket.

The comparison results of the training time and the number of timeouts with these two

kinds of competing traffic are shown in Figures 4.10 and 4.11. The major trend is the same.

The training time and the number of timeouts increase as the number of machines with the

traffic increases. Specifically, Figure 4.10 shows a 37% average increase in job completion
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time when there is competing traffic in 2 or 3 machines. Also, Figure 4.10 presents that

the training time with the live streaming live radio traffic took longer than the time taken

with the YouTube video traffic. It indicates that live radio traffic was more influential on

the performance of the computation than YouTube network traffic. Overall, it is shown that

generating any of these network traffic on worker machines increased the training time and

the number of timeouts.

4.7 Distributed Computing on a LAN Wi-Fi Connection with the Interference from Electri-

cal Appliances

In this section, I wanted to verify the impact of uncontrolled traffic in a wireless edge

environment on DeepMarket’s performance. Since most of users and resources in Deep-

Market will be connected with wireless Wi-Fi network connectivity, there are possibilities

that electrical appliances around them such as microwave ovens, wireless telephones, and

microphones could cause interference with DeepMarket’s job execution [29]. One of the

most common examples of this uncontrolled traffic in a wireless edge environment is the

interference from a microwave oven, so I conducted the same experiment with the same

setup from the previous section, but operating a microwave oven during the job execution

time. In theory, when a wireless Wi-Fi operates with 2.4GHz frequency, a microwave oven

can cause interference on the Internet connection since microwave ovens also operate on the

same range of frequency [30].
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Figure 4.12: Picture of Microwave Oven, Modem, and Router Used in the Test with the
Interference from Electrical Appliances

Table 4.8: Specifications of the Microwave Oven

Figure 4.12 shows the picture of the set up I had in my apartment for this experiment.

I put my personal modem and router on the microwave oven to make it generate some

network interference with the wireless Wi-Fi Internet connectivity. During this experiment,

I placed a microwave-safe container with water inside of the microwave oven and operated

it during the experiments’ execution time. Also, I made sure that the frequency of my Wi-Fi

channel is 2.4 GHz and checked the specification of the microwave oven as shown in 4.8.

The microwave oven has 2.45 GHz frequency, so the Wi-Fi connectivity and this microwave
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oven operated in the same range of frequency so they could have a chance to interfere

with each other. The results of this experiment are shown in Table 4.9 with the previous

experiments’ results for the comparison. Figures 4.13 and 4.14 visualized the comparison

between these and previous experiments’ results.

Table 4.9: Comparison between the Distributed Computing with Microwave Interference
and with Live Streaming Radio Traffic on a LAN Wi-Fi Connection

Figure 4.13: Training Time Result of the Comparison between the Distributed Computing
with Microwave Interference and with Live Streaming Radio Traffic on a LAN Wi-Fi
Connection
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Figure 4.14: Timeout Result of the Comparison between the Distributed Computing with
Microwave Interference and with Live Streaming Radio Traffic on a LAN Wi-Fi Connection

Figure 4.13 shows the average training time of the experiments without any competing

traffic, with live radio traffic, and with operating a microwave oven near the Wi-Fi router.

Figure 4.14 shows the average number of timeouts of the three different experiments. As

shown in these two Figures 4.13 and 4.14, microwave oven interference only marginally

increased the job completion time on average. The average training time with the microwave

oven operation was slightly longer than the average training time without any competing

traffic. I expected that this experiment would have similar results as the experiment with live

radio traffic, but this experiment shows that a microwave oven only slightly interferes with

the Wi-Fi connection. Also, it shows that since a microwave oven or electrical appliances

generate sporadic interference, it has a lower interference power.
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Chapter 5

Related Work

5.1 Advantages of Edge Computing over Cloud Computing

There has been a lot of research going on regarding the comparison of edge computing and

cloud-centric computing. Cloud computing is well known to be used for distributed com-

puting rather than other computing methods since it is a specialized distributed computing

paradigm with cost reduction, dynamical scalability, managed computing power, storage

platforms and other services [31]. However, even though cloud computing can provide more

cost reduction compared to the past, researchers are seeking a cheaper way to compute

a big amount of data. As an alternative to this cloud service, edge computing is getting

attention to be used for distributed computing, and DeepMarktet is also suggesting to use

distributed computing on the edge decentralizing the data center. Therefore, in this section,

I want to look at the research works related to the advantages of edge computing over cloud

computing.

5.1.1 The Cost of Cloud Computing

The main reason that edge computing is getting more and more attention is that the cost to

use cloud computing services has become an important issue for many student researchers.

Cloud computing services are not easily accessible because of the cost, so some individuals
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have to use their private resources or public resources from large companies to compute

vast amounts of data. In addition, cloud computing has to maintain the data center, which

can cause extra cost with low utilization by its resource standing and fragmentation [28].

This data center also causes server, infrastructure, power requirements, and networking

expense [28].

5.1.2 Why Edge Computing?

As shown in [1], cloud computing causes a high cost especially in network latency, mainte-

nance, and energy consumption. As a solution to this problem, several researchers showed

that edge computing is able to improve the performance and expense of cloud computing

while being more economical. Edge computing allows computation at the edge network

which has computation resources to process data. This offloads parts of the data workload

from the cloud [1], so it can improve the performance of computation with less network

traffic as well as having a smaller risk of a data bottleneck. In addition, as shown in [32], the

management and processing cost by cloud computing can be improved with edge computing

with 95% of edge data reduction. Specifically, it has shown that 3 years of management and

processing cost can be decreased from $80,531.00 to $28,927.00 [32].

5.1.3 Network Latency

Deep learning distributed programs usually have a large amount of data to process, and the

most common processing method is by using Apache Hadoop and Spark, which need to use

part of a computing resource to manage software, subsequently losing its performance [33].

Therefore, it’s a given result that cloud computing, with the data center having all the

computation and storage resource on the cloud, has a higher network latency compared to

the edge computing [33].
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5.1.4 Bandwidth Requirements

As stated in [28], the main keys to reducing the cost of cloud computing is networking and

infrastructure since they cause at least 40% of the cost from its data center. Also, if we

take another look at [1], the response time for facial recognition applications was reduced

from 900 ms to 168 ms by computing it at the edge instead of at the cloud. In addition,

as proven in [1], offloading computing tasks from the cloud can reduce 30-40% of energy

consumption. This is mainly due to the advantages of edge computing in terms of lower

bandwidth requirements and less complexity of managing and processing data [34].

5.1.5 Privacy and Security

In this day and age, user privacy is more important than it ever has been and so is the

importance of usability. People want their data to be safe and secure. With the numerous

data leaks throughout the past few years, the population has become understandably cautious

in this regard. On cloud computing, users do not know about where their data stored

and if there are any privileged users who can release their information [31]. In contrast,

edge computing is safe in terms of data privacy since the data does not get stored in a

centralized service or storage [1]. Also, cloud computing is mainly in a web form and

usually over SSL to create and manage users’ jobs and other information, so several security

issues can occur through communications by emails and authentication processes [31].

Therefore, edge computing on private resources is more secure in this term [31]. However,

edge computing itself cannot replace cloud computing because it still has security and

configuration challenges as stated in [4]. Overall, cloud computing itself is no longer the

best platform to be used for distributed computing, and there are needs for a cheaper, safer,

and easily accessible way to compute distributed programs.
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5.2 Existing Infrastructure and Their Difference with DeepMarket

There are existing infrastructures/testbeds to provide low-cost access to massive computing

resources. I introduce these testbeds in this section and compare them against DeepMarket.

DeepMarket has similar objectives to these testbeds but specifically aims to have four

key properties. First, it will support access to large amounts of resources to execute a

massive scale of computations. Second, machine learning abstraction will be built in

DeepMarket, so low-level system configurations are not needed. Third, DeepMarket will

support heterogeneous resources at the edge with both wired and wireless networks. Lastly,

its pricing mechanism will allow researchers low-cost access to resources. To study and

figure out which other existing infrastructures were available, I evaluated them with these

properties in Table 5.1. It shows the existing testbeds/infrastructures, and they are evaluated

by DeepMarket’s four key properties. A “*” indicates that a testbed satisfies the property,

and a “+” indicates partial satisfaction. A “-” means the testbeds or infrastructures did not

satisfy the property at all.

The testbeds in the first row in Table 5.1 are distributed systems and networking testbeds.

As shown in the table, these testbeds can allow users to access computing and network

resources on the clusters. Emulab [35], GENI [36], and OneLab [37] are able to join

into a cluster for distributed edge computing by wireless network connection, but they

don’t provide supports of machine learning abstractions and pricing capability, so they are

designed for only short term access to the resources at the edge. The second row shows

Akraino [38] and Steel [39]. Akraino and Steel can be operated at the edge resources, but

they don’t provide access to large amounts of resources. In addition, on the fourth row,

BOINC [40] supports a large scale of resources and pricing capabilities, but they are not

heterogeneous edge resources and networks. The last row includes TensorFlow, Apache

Spark [14], PyTorch [41], and OpenAI[42] which are machine learning libraries, and they

can be integrated into DeepMarket.
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Table 5.1: Existing Testbeds and Four Key Properties of DeepMarket

As shown, it is not common to find a testbed to satisfy more than two properties among

the DeepMarket’s four key properties as shown in Table 5.1. To meet these properties, Deep-

Market should be researched/updated with the features of existing testbeds and integrated

with other infrastructures if needed.
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Chapter 6

Discussion

In this section, I discuss the pros and cons of DeepMarket over third-party cloud providers

regarding cost, performance (e.g., total job execution time), privacy and security.

Resiliency: The massively distributed nature of DeepMarket makes the architecture

resilient in case of severe outages. Data centers aggregate computational resources at

centralized locations which increases their susceptibility to outages (e.g., an attack that can

wipe out the infrastructure). Thus, to increase resiliency, cloud providers would need to

construct backup centers, which increases the cost.

Cost: With a smart pricing algorithm, DeepMarket can optimize its client-consumer

ratio leading to a reduced cost for all consumers. The pricing mechanism could incentivize

users to share their resources to get credits to run their own programs using others’ additional

resources, so the price of running a program could possibly be for free. Further, unlike

cloud providers, DeepMarket would not incur any extra cost to maintain computational and

storage resources such as cooling, server, personnel, and energy consumption cost, among

others. Several studies have shown that these costs constitute a large portion of total cost in

operating data centers [28].

Latency: As DeepMarket’s network of resources scales, the latency of communication

between resources and users (i.e., users who want to run jobs) reduces. This is because

DeepMarket would be able to match resources and jobs based on proximity, which reduces
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the time it takes for a user to send his/her data to the computational resource and retrieve the

results. Further, the overall traffic towards the network reduces, which reduces the risk of

facing/creating data bottlenecks [1].

Privacy: Data encryption is supported by cloud providers. However, a user’s data is

handled by only a single operator. DeepMarket can spread users’ data across machines

owned by different lenders, which can increase data privacy.

Reliability: A key benefit of cloud providers is their system reliability, as they can

guarantee the resource operation for the time that is desired by any user. In DeepMarket, it

is possible for a user to unexpectedly terminate the resource operation (e.g., forcibly shut

down the machine). This reduces system reliability. One way to address the issue is to build

a scoring system (e.g., [43]) that ranks the reliability of resources and their owners. Deep-

Market can then use resources from users with a better ranking. Additional, DeepMarket

can build redundancy when using resources to counter unexpected job terminations.
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Chapter 7

Conclusion

In this thesis, I presented the design and implementation of DeepMarket, an edge computing

marketplace that allows users to lend or borrow computational resources and run distributed

ML programs. In addition, I introduced DeepMarket’s platform with its software and

hardware infrastructure. I discussed the design of PLUTO, a GUI that simultaneously

allows a user to lend and borrow computational resources. I also presented some of the

key aspects of DeepMarket’s backend services. In chapter 4, I verified that adding only a

fraction of a resource (e.g., 1 out of 4 CPU cores) to a cluster could improve the performance

of DeepMarket, and I characterized the improvement in DeepMarket’s performance as

more workers are added to the cluster. This showed that it becomes feasible for users to

borrow many resources simultaneously, significantly decreasing the job completion time, as

DeepMarket’s adoption increases. Also, I showed through other experiments that renting

resources on DeepMarket has a similar job completion time to renting resources on the cloud

providers. This means that DeepMarket can further reduce job completion time when taking

into account the time it takes to upload data and retrieve the results. However, as DeepMarket

scales, it can match jobs to resources that are closer to users. This can significantly reduce

the overall job completion time (i.e., when also taking into account the time to submit data

and retrieve the results). These benefits are amplified by the reduction in cost due to lower

maintenance cost and the potential increase in user privacy as DeepMarket spreads users’
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data across resources owned by different lenders. Furthermore, the last two experiments

examined the reliability of DeepMarket with possible dynamic competing network traffic.

Finally, in chapters 5 and 6, I compared the DeepMarket against the related work and third

party cloud service providers.
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Chapter 8

Future Work

DeepMarket is currently available in machines with Ubuntu operating systems and requires

installation of Apache Spark. The next version of DeepMarket will support more heteroge-

neous computational resources with Docker [44]. Docker containers can be operated on any

operating systems and manage the configurations, so users will not have to download and

configure Spark and other software such as HDFS, Python, TensorFlow, and TensorFlowOn-

Spark. This also will improve DeepMarket’s security because it will limit computations

to the container environment instead of the physical resource. In addition, DeepMarket

should have a better smart pricing mechanism. To provide a shared marketplace, the pricing

algorithm is important to users and should be made with all the aspects of a user’s need. It

requires a lot of research on how to gather and evaluate the demand and supply of computa-

tional resources and how we will apply the data to generate pricing for different times and

configurations of resources.
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