
DeepMarket: An Edge Computing Marketplace with
Distributed TensorFlow Execution Capability

Susham Yerabolu, Soyoung Kim, Samuel Gomena,
Xuanzhe Li, Rohan Patel, Shraddha Bhise, and Ehsan Aryafar

Computer Science Department, Portland State University, Portland, OR, 97205

Abstract—There is a rise in demand among machine
learning researchers for powerful computational resources to
train complex machine learning models, e.g., deep learning
models. In order to train these models in a reasonable
amount of time, the training is often distributed among
multiple machines; yet paying for such machines is costly.
DeepMarket attempts to reduce these costs by creating a
marketplace that integrates multiple computational resources
over a Distributed TensorFlow framework. Instead of requiring
users to rent expensive GPU/CPUs from a third party cloud
provider, DeepMarket allows users to lend their edge computing
resources to each other when they are available. Such a
marketplace, however, requires a credit mechanism that ensures
users receive resources in proportion to the resources they lend to
others. Moreover, DeepMarket must respect users’ needs to use
their own resources and the resulting limits on when resources
can be lent to others. In this paper, we present the design and
implementation of DeepMarket, an architecture that addresses
these challenges and allows users to securely lend and borrow
computing resources. We also present preliminary experimental
evaluation results that show DeepMarket’s performance, in
terms of job completion time, is comparable to third party cloud
providers. However, DeepMarket can achieve this performance
with reduced cost and increased data privacy.

Keywords: Marketplace Design, Apache Spark, Edge Computing,
Hadoop Distributed File System.

I. INTRODUCTION

As deep learning proves its usefulness in an ever greater
number of applications, there is a rise in demand for faster
and cheaper computational resources to manage and train ever
more complex learning-based models. Purchasing machines
outright, however, can require significant upfront investment
that is not justified by the intermittent use that many re-
searchers require. Renting resources from cloud providers like
Amazon AWS [1] or Digital Ocean [2] is also expensive,
since cloud providers need to construct and maintain cloud
(i.e., data center) infrastructure with significant operation and
maintenance cost. Several recent works have attempted to
intelligently exploit various types of cloud pricing to reduce
their cost [3]–[5], but they are still fundamentally dependent
on cloud providers’ offering low-cost options.

One possible solution to reduce these costs is to introduce a
marketplace for computing resources in which users can lend
each other resources when they are idle, similar to Uber’s
or Airbnb’s sharing platforms. Such a marketplace reduces
upfront investment costs by allowing users to purchase fewer

resources outright and supplement them with others’ machines,
and eliminates the need to pay a cloud provider. While a
few recent startups [6]–[9] and academic works [10], [11]
have proposed similar ideas, such a computing marketplace
is particularly appropriate for training deep learning models,
which can easily be done in a distributed manner. Algorithms
for training these models can be easily adapted to run on
heterogeneous resources, e.g., both CPU and GPU servers,
thus allowing a wide range of users to participate in the
computing marketplace. As edge computing paradigms, which
aim to exploit computational resources at the edge of the
network, become popular, such edge devices may also be
incorporated into a computing marketplace.

In this paper, we present the design, implementation, and
experimental evaluation of DeepMarket, an open-source appli-
cation1 that creates a computing marketplace for deep learning.
Users that lend resources on DeepMarket receive credits for
doing so, which can be used to rent resources from others
in the future. In this way, researchers are incentivized to
contribute their idle resources to DeepMarket; and DeepMar-
ket automatically matches available resources to pending deep
learning jobs, seamlessly executing the jobs over dispersed,
heterogeneous machines. Our key contributions are as follows:

• PLUTO GUI: We created a graphical user interface,
named PLUTO, which allows any user with Internet con-
nectivity to create an account, lend his/her computational
resources, borrow resources from others, and observe
historical rental data and remaining balance. PLUTO
allows a user to remotely lend his/her resources without
the need to directly run PLUTO from them, provided that
the authenticity of resource ownership can be verified by
our backend servers.

• Backend Servers: We setup servers at Portland State
University (PSU) that provide a variety of backend ser-
vices. These services are composed of two key modules:
(i) a Services Module: which is responsible for interfacing
the users (i.e., PLUTO GUIs), dynamic price generation,
and updating jobs’ status; and (ii) an Executor Module:
which builds on top of Apache Spark [13] and Hadoop
Distributed File System (HDFS [14]) for matching jobs
to resources and executing them.

1For the latest project updates, please refer to [12].

• Experimental Evaluation: We have conducted prelimi-
nary experimental evaluation to compare the performance
of our marketplace against renting computational re-
sources on Digital Ocean. We show that DeepMarket has
a similar performance (in terms of job completion time)
to renting resources on Digital Ocean data centers with
the same system configuration parameters (e.g., number
of workers, RAM size and number of cores on each
machine). However, DeepMarket can potentially achieve
this with reduced cost, increased privacy/security, and
reduced communication latency (i.e., the latency to send
data and retrieve the results).

The rest of this paper is organized as follows. We discuss
the system architecture along with PLUTO and server modules
in Section II. We present the results of our experiments in
Section III. We discuss the pros and cons of DeepMarket over
existing cloud based solutions in Section IV. Finally, we
conclude the paper in Section V and discuss the future work
in Section VI.

II. ARCHITECTURE

DeepMarket’s architecture consists of three main modules
as shown in Fig. 1. The first module (PLUTO) resides on
the user’s machine and allows the user to both lend spare
computational resources (and earn credit for that) as well as
submit jobs (i.e., borrow some available computing resources
and run distributed machine learning algorithms on them).

Fig. 1. DeepMarket architecture has three main components: (i) the
Pluto application, which allows a user to submit jobs, lend computing
resources, or use resources from other people; (ii) a services module
that is responsible for bookkeeping, billing, job status update, and
dynamic price generation; and (iii) an executor module that uses HDFS
and TensorFlowOnSpark for distributed data management, resource
scheduling, and running the tasks across the resources.

A user that borrows resources needs to pay for those through
his/her available credit balance. The other two modules reside
on servers that are managed by our team at the Networks
and Wireless Systems Lab at Portland State University (PSU).
The servers are responsible for many backend roles such as
dynamic price generation, accounting, resource scheduling, job
execution, and ensuring the security of services.

In this section, we first discuss PLUTO (Section II-A).
Next, we discuss two of the most important modules on the
server (master) machines: how job submission and resource
additions are handled from the server side (Section II-B) and
how submitted jobs are executed (Section II-C).

A. PLUTO

PLUTO is a simple and intuitive graphical user interface
(GUI) developed using PyQt5 [15], which allows a user to
create an account on our databases. It also provides the users
of our marketplace with the capability to either lend their
spare computational resources or submit jobs for execution
on borrowed resources. Users can remotely lend their spare
computational resources without having to login to each ma-
chine, run PLUTO, and then lend the resource. PLUTO GUI
has three key tabs:

Dashboard Tab: Users can see an overview of their jobs’
status (e.g., running, finished, panic), their resources’ status
(e.g., if a resource is currently being utilized by the system),
the number of recent credits earned and spent, and the total
remaining balance. Each newly registered user gets 50 credits
by default in order to experiment with the application.

CREDIT: 15

Good Morning, Sam

Here are some details about resources / jobs:
5 resources are running, and 2 are in panic mode.
3 jobs are finished, 2 jobs are running,
and 0 are in panic mode.

Total Balance: 15 credits

Estimate profit:
(within next 24 hrs)

+ 30 credits
Estimate cost:
(within next 24 hrs)

 - 20 credits

Past 30 days Cost History
JOB302874 Jan 14, 3 Hrs - 15 credits
JOB306729 Jan 15, 8 Hrs - 43 credits
JOB303423 Jan 15, 7 Hrs - 23 credits

Past 30 days Profit History
MAC301823 Jan 14, 3 Hrs + 15 credits
MAC301863 Jan 15, 1 Hrs + 2 credits

PLUTO

Dashboard

Resources

Jobs

Fig. 2. The “PLUTO Dashboard Tab” provides an overview of the jobs’
status (running, finished, panic), resources’ status, total balance, and a
history of credits earned or spent. The panic modes includes jobs that are
aborted or resources which have lost connectivity to the server. PLUTO
allows a user to remotely lend multiple computing resources. In the
example above, an overview of credits earned by the user across all of
his machines, is shown on the dashboard.

Resources Tab: Users can lend their current machines (on
which PLUTO is installed) and add them to the pool of
available computational resources at DeepMarket by providing
the machine IP address and pressing the VERIFY button.

2

CREDIT: 15

Automated Price Offering Price: 0 credit/Hr SUBMIT

Resource Submission

EVALUATERAM (GB):Cores #:

CPUs/GPUs #: Machine Name:

Resource Planning

Machine Configuration
Cores #: 4 RAM: 4 GBCPU: 8 GB

IP Address: VERIFY

Resource Verification

Add Resources Resources List
Dashboard

Resources

Jobs

PLUTO

Fig. 3. The “PLUTO Resource Management Tab” allows the user to
remotely lend every machine on which the PLUTO application is installed.
The user can specify the desired configuration parameters (e.g., number
of cores, RAM, and in the future time availability of the machine) before
lending the machine. The ownership and configuration are verified before
the machine is added to the pool of resources at DeepMarket.

By pressing the VERIFY, the machine configuration (CPU,
number of cores, and RAM) would be displayed to the user.
If a user intends to lend a remote machine (i.e., a machine that
is different from the current machine), the verification system
asks for proper credentials to ensure resource ownership. Once
the machine configuration parameters are shown to the user,
the user can specify the fraction of resources which he/she is
willing to lend, e.g., a user may only lend half of the total
cores or RAM, and use the remaining cores and RAM for
local use. A user has to “EVALUATE” the specified values,
so that PLUTO can ensure these values are legitimate (i.e.,
are less than the machine configuration parameters). In our
current implementation of DeepMarket, the credit that a user
earns by lending his/her machines is automatically generated
by our system. Our future updates to PLUTO would enable a
user to specify a lending price. DeepMarket would then only
use the resource if borrowers are willing to pay that price.
Finally, through the “Resources List” sub-tab, a user can view
the existing machines that are lent by the user and their status
(e.g., if they are currently being used by the system).

Jobs Tab: This tab provides several functionalities: (i) it
displays the current price of running jobs (as announced by
the server) per CPU/GPU/RAM/Disk unit (e.g., 1 Credit/Hr
for 1GB of RAM). The prices are denoted over four six-hour
time slots, beginning at 12 AM at our server location. The
variability of prices at different time slots allows users with
less credits to schedule their jobs at cheaper times. (ii) The
“Jobs Tab”, also provides an interface for users to submit jobs
and run distributed TensorFlow programs. In addition to the
desired job running time, the user specifies the desired number
of workers, cores and RAM per worker, and the “HDFS path”
to the source files and input files (data files). These are all
needed when running a ML job. Once a user submits the job,
the total price of the job execution will be displayed, and
the user can cancel the job execution before it is sent to the

PLUTO

Dashboard

Resources

Jobs

Workers #: Cores #: Memory:

Source file:

Input file:

SUBMIT

Job Submission

Disk:
Memory:

GPU:
CPU:
Time 6 AM - 12 PM

1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

12 AM - 6 AM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

12 PM - 6 PM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

6 PM - 12 AM
1 Credit/hr
7 Credit/hr
2 Credit/hr
3 Credit/hr

Pricing Per Time Slot

CPU #: 12
GPU #: 2
Memory: 24 GB
Disk: 40 GB

Available
Resources

Add Jobs Jobs List
CREDIT: 15

Fig. 4. The “PLUTO Jobs Tab” is composed of two sub-tabs. In the
first sub-tab (depicted here) the current price for a default configuration
(across four 6-hour time slots) is shown to the user. The user can select
the desired job sunning time. This sub-tab also allows the user to specify
the desired number of cores, workers, and RAM to run the job on. The
second sub-tab shows the status of the previously submitted jobs.

backend servers. Finally, a sub-tab of the “Jobs Tab” denotes
the previous submitted jobs and their status (e.g., completed,
running, aborted).

B. Services Module

The services module resides on the server and interacts
with machines that run PLUTO through Internet. This mod-
ule is responsible for many bookkeeping applications (e.g.,
users/resources/jobs database) as well as dynamic price gen-
eration, ensuring security of the market, and updating jobs’
status (both internally and across PLUTO applications). We
discuss the most important aspects.

REST API Server: We have developed a secure REST
(Representational State Transfer) API (Application Program-
ming Interface) service to save detailed information about
users, job submissions, and resources. By conforming to the
REST architectural style, we ensure interoperability across
different computer systems on the Internet. This increases the
performance, speed, and scalability of our architecture.

Price Generator: There are 4-time slots (each with a 6
hour period) to choose from when submitting a job through
PLUTO’s Jobs Tab. Each time slot will have a different price
at which the use of resources will be billed. Currently, the
price generator service runs at 12:00 AM every morning to
generate random prices for computational resources (CPU,
GPU, RAM, Disk) for the next 24 hours. We are currently
working on a smart pricing algorithm to generate these prices
for each time slot based on the previous jobs’ execution
times, availability of resources, and historical and/or predicted
demand for resources. A user’s job that spans multiple time
slots is billed based on the usage and price of each time slot.

Job Submission Service: As users submit their jobs, the
jobs and their configurations (e.g., the selected time slots)
get stored in a database. The job submission service keeps
checking this database every 1 min for any new job submission

3

entry. It then submits the job, based on the selected time slot,
to the Spark Driver. The Spark driver, co-located on the server,
is part of the Executor Module and handles the job execution.

Job Status Update Service: Apache Spark has a web
application UI/API to show the job execution status and
worker status. Our “Job Status Update Service” utilizes the
spark API to update the submitted job status and the host
machine status in the corresponding databases. These updates
are also reflected on the PLUTO applications.

C. Executor Module
Similar to the services module, the executor module resides

on the server and is responsible for data file management, se-
lection (scheduling) of resources, and execution of distributed
TensorFlow programs. We use a combination of Apache Spark,
TensorFlowOnSpark, and HDFS to achieve these goals.

Hadoop Distributed File System (HDFS): Since training
of deep learning or machine learning models would require
large amounts of data, it is necessary that this data is available
to each worker machine in a reliable and fault tolerant manner.
We use HDFS to realize these needs. HDFS is a distributed
file system designed to run on commodity hardware. HDFS
is highly fault-tolerant and is designed to be deployed on
low-cost hardware and provides high throughput access to
application data and is suitable for applications that have large
data sets [15].

Apache Spark: There are several frameworks and libraries
like Horovord [16], MxNet [17], Apache Spark MLib [18],
TensorFlowOnSpark [19] to efficiently utilize the GPUs/CPUs
and train Machine Learning models faster through parallelism.
We have chosen Apache Spark along with TensorFlowOn-
Spark as the underlying framework for DeepMarket since
the computational resources utilized to train the distributed
TensorFlow models can be conventionally used laptops or
desktops. Apache Spark can: (1) flexibly use different cluster
managers like Hadoop YARN, Apache Mesos, and Kuber-
netes; (2) Provide Fault Tolerance as machines stop working
for a variety of reasons (e.g., when a user unintentionally shuts
down the resource); (3) Handle Stragglers2; (4) Integrate with
Hadoop Distributed File System.
TensorFlowOnSpark: By combining salient features from the
TensorFlow deep learning framework with Apache Spark and
Apache Hadoop, TensorFlowOnSpark enables distributed deep
learning on a cluster of GPU and CPU servers. TensorFlowOn-
Spark supports all types of TensorFlow programs, enabling
both asynchronous and synchronous training and inferencing.
It supports model parallelism and data parallelism as well as
TensorFlow tools such as TensorBoard on Spark clusters [19].

III. EXPERIMENTAL EVALUATION

We have conducted preliminary experiments to characterize
the performance of our system. We conducted experiments

2Stragglers: A machine that takes an unusually long time to complete one of
the last tasks in the computation. Stragglers can arise for a variety of reasons.
For example, a machine with a bad disk may experience frequent correctable
errors that slow its read performance from 30 MB/s to 1 MB/s [20].

leveraging the MNIST distributed TensorFlow program, which
is the “Hello World” program of Machine Learning. The
MNIST (Modified National Institute of Standards and Tech-
nology) database, is a large database of handwritten digits that
is used for training various image processing systems [21]. It
contains 60,000 digits ranging from 0 to 9 for training digit
recognition systems, and another 10,000 digits as test data.
Each digit is normalized and centered in a gray-level image
with size 28x28 or with 784 pixel in total as the features. A
few examples of MNIST dataset are shown in Fig. 5.

Fig. 5. MNIST Dataset Examples

Our key objective in our performance evaluation is to
characterize how resources (e.g., conventional laptops, virtual
machines in a data center) and their locality affect the perfor-
mance of DeepMarket. We chose “job Completion Time”, i.e.,
the time it takes to train a fixed model for a given number
of epochs 3 as our key performance indicator. We observed
similar training accuracy results, irrespective of type/ locality
of resources, and hence we do not report those results.

We evaluated the performance of DeepMarket for three dif-
ferent setups of computational resources and backend servers:
(i) Lab LAN: This is a LAN setup in our lab at PSU. Our
resources are three conventional laptops and our server is a
single Desktop Ubuntu machine, and they are all connected
to the same WiFi network. Our architecture currently only
supports Ubuntu machines (the limitation comes from our
implementation of the “executor module”), which limited the
number of workers that we could create in our lab. Fig. 6
shows the configuration of our lab resources (i.e., laptops that
serve as worker machines). (ii) Multi-DC: The server and
resources are computers rented from Digital Ocean and the
resources belong to different data centers. Fig. 7 shows the
location of resources in this setup. (iii) Single DC: The server
and resources are computers from digital Ocean, however, all
machines are located in a single data center in San Francisco.

Before executing the experiments, we uploaded the data files
and the source file of the MNIST distributed TensorFlowOn-
Spark program to the HDFS hosted on the server machine.
In “Lab LAN” and “Single-DC” setups, the server is located
on the same network and data center as worker machines,
respectively. In “Multi-DC” setup, the server is located in San
Francisco.

Experiment 1: We first evaluate the training completion
time of our LAN testbed with physical laptops and desktop.
We vary the number of epochs from 5 to 100 and conduct

3One epoch is when an entire dataset is passed forward and backward
through the neural network only once.

4

Fig. 6. We used three Ubuntu laptops (each with 4 cores) to build our local
resource cluster. All laptops are connected to the same WiFi network.

Fig. 7. Digital Ocean machine configurations, when resources belong to
different locations, i.e., different data centers. Rental price is also shown.

experiments with both 1 GB and 2 GB RAM on each worker.
Each worker only lends one of its CPU cores. We depict the
results in Fig. 8. Several observations can be made. First, the
increase in number of epochs linearly increases the completion
time, which is because the training data needs to be gone
through multiple times. We also observe that additional RAM
only marginally reduces the completion time, emphasizing the
benefit of renting/borrowing only a partial resource. Finally,
we observe that our application can successfully authenticate
users and their resources, and allow users to lend only a part
of their computing resource (i.e., a single core or 1 GB RAM).

Experiment 2: Our next objective is to compare the
performance of DeepMarket across all three setups. We use
three resources in all setups, each resource with 1 GB of
RAM and 1 core. The results for 100 epochs are plotted
in Fig. 9 (we observed similar performance results for a
fewer number of epochs). We observe that using resources
that belong to the same data center (Single-DC) results in the
fastest job completion time. Resources in a single Data center
are connected to one another through fiber, which significantly
increases the speed of message passing across workers when
running distributed TensorFlow programs. Additionally, our
rented CPUs had a slightly faster clock, which helped with
job completion time compared to “Lab LAN”. However, we
emphasize that these results do not take into account the time
it takes to submit a job (i.e., transfer source file) and retrieve
the results at the user. DeepMarket provides a marketplace for
computational resources anywhere in the network, particularly
at the edge. This can significantly reduce the total time it takes
for an edge device to offload its computation and retrieve

Fig. 8. Job completion time when three workers are connected to the same
WiFi LAN. Each worker only lends a single core.

Fig. 9. Comparison across all schemes with 100 epochs. Each setup uses 3
worker machines, each worker with 1 core and 1 GB of RAM. The completion
time in minutes is shown on each bar.

the results. The benefits of edge computing in reducing the
communication latency has been documented in many prior
works, including [22], [23].

Note that different resources from different data centers
that belong to a single provider (e.g., resources in Multi-DC)
are typically connected to one another through high capacity
backbone (Internet) links. However, we observe that “Lab
LAN” with WiFi connectivity among resources still outper-
forms “Multi-DC”. Overall, we observe that renting resources
on conventional laptops, has a comparable performance to
renting computational resources on cloud providers.

Experiment 3. In our final experiment, we investigate how
the increase in the number of worker machines impacts the job
completion time. We consider the same worker configuration
of the previous experiment (i.e., each worker with one core and
1 GB of RAM), but vary the number of workers. The results
for “Multi-DC” and “Single DC” are depicted in Fig. 10.
We observe that the “Single-DC” architecture consistently
outperforms the “Multi-DC” architecture and the completion
time across both schemes reduces as a function of number
of workers. The results show that as DeepMarket scales in
terms of user adoption, it becomes feasible for users to borrow
many resources simultaneously and significantly reduce their
job completion time.

Fig. 10. Training completion time as a function of number of workers. The
completion time in minutes is shown on each bar.

IV. DISCUSSION

In this section, we discuss the pros and cons of DeepMarket
over third party cloud providers regarding cost, performance
(e.g., total job execution time), privacy and security.

Resiliency: The massively distributed nature of DeepMarket
makes the architecture resilient in case of severe outages.

5

Data centers aggregate computational resources at centralized
locations which increases their susceptibility to outages (e.g.,
an attack that can wipe out the infrastructure). Thus, to
increase resiliency, cloud providers would need to construct
backup centers, which increases the cost.

Cost: With a smart pricing algorithm, DeepMarket can
optimize its client-consumer ratio leading to a reduced cost
for all consumers. The pricing mechanism could incentivize
users to share their resources to get credits to run their own
programs (using others’ additional resources), so the price of
running a program could be possibly for free. Further, unlike
cloud providers, DeepMarket would not incur any extra cost to
maintain computational and storage resources such as cooling,
server, personnel, and energy consumption cost, among others.
Several studies have shown that these costs constitute a large
portion of total cost in operating data centers [22].

Latency: As our network of resources scales, the latency of
communication between resources and users (i.e., users who
want to run jobs) reduces. This is because DeepMarket would
be able to match resources and jobs based on proximity, which
reduces the time it takes for a user to send his/her data to the
computational resource and retrieve the results. Further, the
overall traffic towards the network reduces, which reduces the
risk of facing/creating data bottlenecks [23].

Privacy: Data encryption is supported by cloud providers.
However, a user’s data is handled by only a single operator.
DeepMarket can spread users’ data across machines owned by
different lenders, which can increase the data privacy.

Reliability: A key benefit of cloud providers is their system
reliability, as they can guarantee the resource operation for the
time that is desired by any user. In DeepMarket, it is possible
for a user to unexpectedly terminate the resource operation
(e.g., forcibly shut down the machine). This reduces the system
reliability. One way to address the issue is to build a scoring
system (e.g., [24]) that ranks the reliability of resources and
their owners. DeepMarket can then use resources from users
with a better ranking. Additional, we can build a redundancy
when using resources to counter unexpected job terminations.

V. CONCLUSION

We presented the design and implementation of DeepMar-
ket, an edge computing marketplace that allows users to lend
or borrow computational resources and run distributed ML
programs. We discussed the design of PLUTO, a GUI that
simultaneously allows a user to lend and borrow computational
resources. We also presented some of the key aspects of our
backend services. Finally, we showed through experiments that
renting resources on DeepMarket has a similar job completion
time to renting resources on the cloud providers. However, as
DeepMarket scales, it can match jobs to resources that are
closer to users. This can significantly reduce the overall job
completion time (i.e., when also taking into account the time
to submit data and retrieve the results). These benefits are am-
plified by the reduction in cost due to lower maintenance cost
and potential increase in user privacy as DeepMarket spreads
users’ data across resources owned by different lenders.

VI. FUTURE WORK
Our current implementation of DeepMarket supports ma-

chines with Linux OS. Further, each computational resource
needs to have an installation of Apache Spark. We are in the
process of releasing a new version of our software with support
for Docker [25]. Docker is a lightweight container that can
be run on any OS without the need for Spark installation.
In addition, it provides a virtual environment in a resource
machine, ensuring both the security of lenders’ resources and
borrower’s jobs. In parallel to Docker, we are developing a
dynamic pricing mechanism to match jobs and computational
resources based on supply and demand. Finally, we are in
the process of openly releasing our software to the research
community. This would allow others to experiment with the
framework and contribute to many aspect of the project such
as pricing and blockchain-based credit system design.

REFERENCES

[1] “Amazon Web Services (AWS),” https://aws.amazon.com/
[2] “Digital Ocean Cloud Computing,” https://www.digitalocean.com/
[3] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to

bid the cloud,” in ACM SIGCOMM Computer Communication Review.
ACM, 2015, vol. 45, pp. 71–84.

[4] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang,
“On the viability of a cloud virtual service provider,” ACM SIGMETRICS
Performance Evaluation Review, vol. 44, no. 1, pp. 235–248, 2016.

[5] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang, “Learn-
ing cloud dynamics to optimize spot instance bidding strategies,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 2762–2770.

[6] M. Lynley, “Snark ai looks to help companies get on-demand
access to idle gpus,” TechCrunch, https://techcrunch.com/2018/07/25/
snark-ai-looks-to-help-companies-get-on-demand-access-to-idle-gpus/.

[7] “Kings Distributed Systems,” https://kingsds.network/
[8] “Golem Network,” https://golem.network/
[9] “SONM: Decentralized Fog Computing Platform,” https://sonm.com/

[10] T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche,
and P. Shenoy, “Sharing renewable energy in smart microgrids,” in
2013 ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2013, pp. 219–228.

[11] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer computing,” in
Technical Report HPL-2002-57, HP Labs, 2002.

[12] “DeepMarket Project Website,” https://deepmarket.cs.pdx.edu/
[13] “Apache Spark,” https://spark.apache.org/
[14] “HDFS: Hadoop Distributed File System,” https://hadoop.apache.org/
[15] “PyGt5 5.11.3,” https://pypi.org/project/PyQt5/
[16] “Meet Horovod: Ubers Open Source Distributed Deep Learning Frame-

work for TensorFlow,” Available: https://eng.uber.com/horovod/
[17] “Apache MXNet (Incubating),” https://mxnet.apache.org/
[18] “Apache Spark’s scalable machine learning library (MLib),”

https://spark.apache.org/mllib/
[19] “TensorFlowOnSpark,” https://github.com/yahoo/TensorFlowOnSpark
[20] “MapReduce: Simplified Data Processing on Large Clusters,”

https://static.googleusercontent.com/media/research.google.com/en/
/archive/mapreduce-osdi04.pdf

[21] “MNIST database,” https://en.wikipedia.org/wiki/MNIST database
[22] D. A. Maltz A. Greenberg, J. Hamilton and P. Patel, “The cost of a

cloud: research problems in data center networks,” in ACM SIGCOMM
computer communication review 39.1, (2008): 68-73, 2008.

[23] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: vision
and challenges,” IEEE Internet of Things Journal, 2016.

[24] R. Zhou and K. Hwang, “Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing,” IEEE Transactions on
Parallel & Distributed Systems, , no. 4, pp. 460–473, 2007.

[25] “Docker Container System,” https://www.docker.com/

6

