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ABSTRACT With the rise and widespread deployment of a vast array of wireless radio access technologies
(e.g., 3G, 4G/LTE, 802.11, Bluetooth, and Femto) and the growth of interest in potential 5G technologies
such as millimeter-wave radio, coupled with the rapid increase in the number of network edge devices with
multiple radio interfaces, the question of network control and client-to-base-station association becomes an
important issue. Older, well-studied centralized control schemeswhere a single computational entity harvests
channel information from individual clients in order to determine optimal resource allocations for each client
is no longer tenable: such methods require significant signaling overhead which does not scale well with the
expected number of hundreds of thousands of smart client devices with multiple radio interfaces capable
of leveraging many different radio access technologies (RATs). With the rise of these smart devices, which
come with significant computational power, it is now possible to ask the question: can the network allow
the client control over RAT selection and association in order to meet some client-driven or network-driven
objective, and to what degree does the network assist the client in making these choices? This question
becomes particularly important given the increasing interest in standardization and deployment of client-
controlled edge networking, or Fog networking. In this paper, we explore the spectrum of client-controlled
HetNets for 5G networks: from the fully devolved distributed local control approach, where clients make
local decisions without any assistance from the network, to the hybrid control approach where clients may
make decisions given some global information provided by the network.

INDEX TERMS HetNets, 5G, cellular networks, distributed control, radio access networks.

I. INTRODUCTION
Heterogeneity of modern wireless network radio access tech-
nologies (RATs) (such as 3G, 4G/LTE, Wi-Fi, Bluetooth,
and potential 5G technologies) is a critical component for
ensuring network access and communication in current- and
next-generation wireless networks. With so many different
networking options available, and with modern mobile and
edge devices sufficiently equipped with multiple wireless
interfaces to take advantage of these different networks, these
mobile devices are able to switch between different networks
in an opportunistic way to perform services useful to the user.

However, this increased access to different networks
(Fig. 1) comes with the added requirement and complexity
of determining which network a client should connect with at
any given time. In a chaotic radio environment (e.g. a bustling
urban downtown neighborhood), channel conditions change

so frequently that fine control of the clients in the network
is required in order to prevent certain behaviors such as
frequent switching between networks from damaging overall
network performance. The main question to be answered in
the Heterogeneous Networks (HetNets) scenario is ‘‘How
should a user select a RAT at any given time?’’ For exam-
ple, there are many efforts under way to specify solutions
for networking cellular technologies (LTE, 3G, etc.) and
IEEE 802.11 (Wi-Fi) technologies in the Third Generation
Partnership Project (3GPP) [1], [2].

One traditional approach taken by network operators and
academic research on HetNets is to allocate authority to a
centralized agent or controller, which is then able to distribute
edge devices and users over different networks based on some
network objective such as load balancing. This approach has
the advantage of finding a global optimal operating point
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FIGURE 1. An example of a Heterogeneous Network with clients able to
access 5G millimeter wave RATs

by assigning devices to RATs. However, with increasing
numbers of mobile devices at the network edge, the message
passing required from edge devices to the centralized agent
to communicate available RATs and channel qualities for
each device can quickly grow exponentially, resulting in an
untenable situation for high-density areas like urban environ-
ments. Furthermore, different network operators seldom have
an incentive to cooperate: for example, Boingo Wireless has
no financial benefit in offloading its ownWiFi customers onto
Verizon’s cellular network, and vice versa.

Meanwhile, with the advent of smartphones and other edge
devices with high computational capacity, it is increasingly
common to find devices released by device vendors with
some form of association control given to the user, such
as control loops that compare received signal powers from
different RATs to select the optimal RAT. Localizing multiple
aspects of the network association control plane to the edge
device allows for a more accurate local view of not only
the ambient radio environment around the client, but also
the current applications that are running the client device,
any user-specific preferences for data and energy usage,
as well as the remaining battery life of the device itself.
Furthermore, pressing issues present in a centralized
decision-making scheme such as ownership and control of the
intelligence for RAT selection over multiple BSs are avoided
by allowing individual clients to determine which network
they should connect to.

The heterogeneity (e.g. latency, bandwidth, packet loss,
availability, etc.) of networks, coupled with the rise of
increased computational power on modern mobile and edge
devices, has increasingly led to the question of not only which
RAT to select, but also where the intelligence for RAT selec-
tion in HetNets should be located, and it is now not incon-
ceivable to place the some functionality for RAT association
at the network edge–on the client device itself. In fact, with
interest in client-driven network control (used in applications
such as edge networking, or Fog networking [3]) increasing in
the past few years, network-controlled centralized solutions
can no longer be applied to problems such as client-controlled
data transfer, storage and processing on the network edge.

In the paper we survey a variety of different client-centric
approaches in localizing RAT selection and association for
HetNets, and how they may be extended to be used with
next-generationwireless technologies. Termed 5G or 5th gen-
eration wireless systems, these technologies are expected to
provide data rates in the tens of Mbps, with speeds upwards
of 1 Gpbs in special cases, as well as increased spectral effi-
ciency, decreased latency, improved coverage and enhanced
signalling [4]. Although HetNets is not an intrinsic part of
the 5G definition [5], integrating 5G technologies with other
existing deployments into a larger system of HetNets can
provide a large payoff for both the network and the clients in
terms of increased throughput, lower latency, better network
load balancing, and other benefits.

The rest of the paper is structured as follows. We describe
past approaches to HetNets and the client-centric HetNets
model in Section II, and a baseline algorithm to solve the
problem. Next, we discuss extensions to the basic model,
recent work for each category as well as future work in
Section III. We then discuss recent progress in industry and
standards bodies for HetNets in 5G in Section IV. Finally, we
discuss some fundamental assumptions made in HetNets in
the conclusion in Section V.

II. NETWORK MODEL FOR 5G HetNets
A. HetNet SELECTION
There have been many different approaches to modeling the
RAT selection problem in HetNets [6]–[14], where clients
are allowed to switch radio interfaces for data transmission
in order to improve some metric (Fig. 2a). These approaches
have attempted to ask and answer the questions of where in
the wireless network that RAT selection should take place,
and how RAT selection should take place: specifically, what
algorithm should be used to determine which RATs to con-
nect to.

Traditionally, solutions to these questions have been
primarily network-centric, setting where to be inside the
network core, and how to be some centralized agent run-
ning an optimization algorithm that makes a global client-
to-Base-Station/eNode-B association decision for all clients
in the network at the same time. The advantages of such an
architecture, where all decisions are made on the network
side, are that the RAT selection algorithm can act upon a
big-picture view of the network (can poll clients for their
local channel conditions and have loading information on the
RATs themselves) and converge to and achieve a globally-
optimal result with respect to some network metric relatively
quickly. This approach is generally favored by organizations
such as cellular service providers that seek tomaintain control
of network operation, reflecting the view that the network
should optimize for some network-wide metric that the ser-
vice provider wishes to focus on.

In network-controlled HetNets, these decisions are made
in the following way (Fig. 2b): first, the centralized agent
that performs the decision-making polls all clients seeking to
connect to one or more of the RATs controlled by the agent,
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FIGURE 2. (a) Client with access to 3 Heterogeneous RATs; (b) Network-controlled HetNets: (1) The client reports information on its
accessible RATs to the centralized agent, which (2) computes the globally optimal client-RAT association back to the client and
(3) switches RATs; (c) Client-controlled HetNets: (1) The client gathers information on its accessible RATs and makes a local decision
for its own client-RAT association decision and (2) switches RATs.

requesting information on the client’s local channel condi-
tions. Based on this information, it calculates the optimal
association of clients to RATs, and then transmits these asso-
ciations back to each client. Once the client receives these
instructions (by way of the RAT it is currently using), it then
changes its RAT association as directed.

The exact optimization performed is unique to each net-
work. Depending on the type of network and the network
operator, different networks may be designed to optimize for
different metrics depending on their business needs:
• Maximize aggregate throughput and fairness of resource
allocation [8], [9], [15]

• Load balancing [10]–[12], [16]
• Minimize outage probability [13], [14]
• Maximize a measure of Quality of Service

A variety of techniques are used to achieve these goals such
as cost functions, utility maximization, stochastic geometry
and combinatorial optimization to determine the ‘‘best" [17]
network to associate with [18] and [19].

However, there are downsides to centralized network-
controlled HetNets. Chief among these are the issues of
timeliness of switching, scalability of the system to multiple
clients with multiple interfaces, and the issue of how to obtain
global control of client-RAT association. Any centralized
scheme would have to obtain client inputs (e.g., channel
conditions, battery life, number and type of interfaces on
the device, application type, etc.) in order to optimally allo-
cate resources. Such polling would incur significant delay
in each calculation due to latency between client and con-
troller. Furthermore, all clients need to convey this informa-
tion to the network–depending on the geographical area that
the centralized agent controls, the sheer amount of required
overhead traffic simply for passing clients’ parameters to
the network could become a significant portion of data that
the network transports, further limiting the efficiency of the
HetNet. Finally, different RATs belonging to different busi-
ness entities may not be willing to pool resources and
allow outside control of proprietary networks. For example,

to achieve true centralized network-controlled HetNets, com-
panies such as Verizon andBoingomust bewilling to hand off
their existing customer traffic to each other when instructed
to do so–raising questions about fairness of traffic allocation
between their respective cellular and Wi-Fi networks, how to
agree upon a method of traffic allocation, and even customer
privacy.

In contrast to centralized network-controlled HetNets,
client-controlled HetNets focuses solely on the clients’ per-
spective. Based on local observations at the client itself,
the client must make a decision to associate with the RAT
that provides some optimal metric (e.g., a utility function,
throughput, etc.), evaluated locally (Fig. 2c). Although this
form of distributed optimization run on individual clients
may not obtain a client-RAT association with as good a
metric as the centralized network-controlled case [20], [21],
there are several advantages. First, the timeliness problem
of the centralized case is avoided: all measurements do not
suffer from network latency, as all measurements are locally
available on the client. Second, scalability of RAT selection in
HetNets is maintained as each client only needs to calculate
its optimal association. Third, client privacy is preserved as
it no longer needs to transfer information about its traffic
(data type, utility function, battery power, etc.) to agents in
the network. Finally, the different business entities needing
to share control of their networks is avoided–as long as each
client has permission to associate with a RAT, each network
only need allow the client to connect when requested.

B. NETWORK MODEL
Next, we describe the basic model for client-controlled
HetNets, where the user controls its own RAT selection deci-
sions based on its local view of the network.

Let M be the set of Base Stations (BS) accessible
to the set of distinct client devices in a given physical
area, N , some of which may be 5G wireless technologies,
where M the number of BS available and N the number of
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TABLE 1. Main notation.

clients in the area. Here, Base Station (BS) is used as a generic
term to represent millimeter-wave BS in 5G mmWave, eNB
in 4G, AP in 802.11, etc., and all BSs are assumed to be
non-interfering due to frequency reuse or spatial separation
between same-RAT BSs and frequency separation between
different-RAT BSs. Each client device can simultaneously
communicate with a subset of BSs up to the number of RAT
interfaces it is equipped with.1

The goal of the network is to determine how to best choose
which RAT a client should connect to at any given time. The
general RAT selection problem in HetNets has the following
form: maximize some aggregate utility function over all indi-
vidual clients (Eq. 1), subject to some association constraints
on the clients (Eq. 2,3) over the decision variables (Eq. 5):
maximize ∑

i

Ui
(
ωi,1, ωi,2, ..., ωi,M

)
∀i ∈ N (1)

subject to∑
k

Xi,k ≤ Ki∀i ∈ N , k ∈ M (2)

ωi,k = f (Y1,k , . . . ,YN ,k )∀i ∈ N , k ∈ M (3)

Yi,k = Xi,k · Ri,k∀i ∈ N , k ∈ M (4)

with variables

Xi,k ∈ {0, 1} ∀i ∈ N , k ∈ M (5)

where Ui(.) is the utility function being maximized, Ki = 1
for single-homed clients (Ki > 1 if multi-homing is allowed),
ωi,k is the throughput of client i on RAT k , which depends
on a specific throughput sharing function f (Y1,k , ...,YN ,k ),
and Yi,k = Xi,k · Ri,k is the product of the PHY-layer rate
Ri,k of client i on RAT k and the binary-valued association
variable Xi,k (Xi,k = 1 if client i associates with RAT k and
0 otherwise).

These utility functions may be designed to optimize differ-
ent metrics ranging from weighted aggregate throughput and
cost of obtaining service, to fairness of obtained throughput
and network load balancing.

In client-centric RAT selection in HetNets, this problem is
solved by placing the RAT association decision on each of the

1Due to frequency separation, it is assumed that each RAT interface
can observe signals from at most one BS at any time, and for interfaces
that receive signals from multiple BSs, the functionality is assumed to be
modeled by treating each BS as a distinct RAT: e.g. an 802.11 interface with
Channels 1,6,11 accessible viewed as a 3-RAT interface.

individual clients with varying degrees of assistance provided
by the BS. Each client makes a locally-optimal decision based
on knowledge of its radio environment, and act in a dis-
tributed manner. In such client-centric approaches, showing
the system is stable (i.e., it converges) is key–otherwise an
algorithm may lead to compounding negative behaviors such
as infinite oscillation and a suboptimal outcome for all clients
involved.

C. BASELINE CLIENT-CENTRIC RAT SELECTION
The problem of RAT selection ismodeled as a noncooperative
game [20] in which clients select BSs to maximize each
client’s individual throughput in a distributed manner. In this
game formulation, the player set is defined as the set of
users N , and their strategies are the set of accessible BSs M .
In [20], all RATs are classified into one of two classes of

throughput-sharing models that are functions of the individ-
ual PHY-layer rates (Ri,k ) for each client associating with the
RAT (Xi,k > 0). The first class of models is characterized by
throughput sharing functions that depend on the maximum
rates of clients on the RAT Ri,k (e.g. proportional-fair), with
Eq. 6 replacing Eq. 3:

ωi,k = fk (Y1,k ,Y2,k , ...,YN ,k ) ∀i ∈ N (6)

where fk (.) is a RAT-specific throughput-sharing function that
depends on Yi,k = Xi,k · Ri,k , the PHY-layer rates of all
clients associated with RAT k at that time. An example of
this is the downlink coordination function (DCF) in 802.11
that provides fair access:

ωi,k =
L∑
j
L
Yj,k

∀i ∈ N (7)

where L is the packet length (e.g. downlink WiFi through-
put). With the assumption that each client can obtain or
predict Ri,k simple knowledge of the type of throughput-
sharing model can result in accurate prediction of potential
obtainable throughput (ωi,k (t) at each time t).
The second class of models is characterized by throughput

sharing functions fk (.) that depend only on the total num-
ber of users that share the RAT (nk ), and not all of the
clients’ individual rates. This model allows for individual
client throughputs to be distinct from that of other clients
sharing the same RAT (e.g. time-fair), with Eq. 8 replacing
Eq. 3:

ωi,k = Yi,k × fk (nk ) ∀i ∈ N (8)
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where nk = |Yi,k > 0| is the number of clients on RAT k . An
example of this type of sharing function is time-fair TMDA
MAC protocols, where each client has an equal amount of
time to transmit:

ωi,k =
Yi,k
nk
∀i ∈ N (9)

Algorithm 1 Baseline Client-Centric RAT Selection
Algorithm
Input: user i’s parameters: η, T , p, h, Set of RATs
Output: Decision to switch, and the selected RAT

1 for each RAT k ′ do

2 if
ωi,k′ [t+1]
ωi,k [t]

> η, ∀ t = t − T + 1, ..., t then
3 if class(k ′) = class(k) then
4 if rand < pmi+1 then
5 switch to k ′

6 if concurrent move then increment mi
7

8 else reset mi to 0
9

10 else
11 if ωi,k ′ > h then
12 if rand < pmi+1 then
13 switch to k ′, update h
14 if concurrent move then

increment mi
15

16 else reset mi to 0
17

D. BASELINE CLIENT-CENTRIC ALGORITHM
The baseline algorithm for client-centric RAT selection
in [20] is shown below in Algorithm 1, where the separable
objective in Eq. 1 is maximized individually by each client
seeking to maximize its own throughput ωi,k . In order for
a client i to switch at time t + 1 from BS k to BS k ′, the

expected throughput gain defined as
ωi,k′ [t+1]
ωi,k [t]

should exceed
a threshold (η) for the past T time slots (Line 2), where T
corresponds to the frequency of measurement. If multiple
clients simultaneously switch to the same BS, they would
observe a mismatch between their observed throughputs and
their predicted values. Tominimize concurrent switches to the
same BS, clients are assumed to switch probabilistically with
probability p < 1 (Line 4). The randomization parameter, p,
depends on the congestion in the network and acts similarly
to the 802.11 contention windowmechanism. However, when
simultaneous switching to a BS happens, all clients involved
set their randomization parameter to pmi+1 (Line 6), as in
binary exponential backoff, where mi is the number of past
consecutive concurrent switch observed by i.

As clients locally determine which RAT to associate with
in order to maximize their own local utilities, it may be
that some clients continually switch without convergence.
Hysteresis is introduced to dampen oscillations so that the
system converges to equilibrium. This parameter, h, rep-
resents the dependence of RAT selection to the historical
behavior of the client and its previous switches. Algorithm 1
shows an example policy where a client is only allowed to
change between BSs of different classes if it has an expected
throughput greater than its hysteresis value (Lines 8-9).

This algorithm is guaranteed to converge to a Nash
Equilibrium for any combination of BSs from either class
(Theorems 1 − 3, [20]). Furthermore, if all BSs are time-
fair, the average Pareto-efficiency gain (average per-client
throughput improvement) between a non-Pareto-optimal
Nash output of Alg 1 and a Pareto-dominant profile is
bounded by 2 if N ≤ M and N+M

N if M ≥ N
(Theorem 6, [20])). Similarly, if all BSs are proportional-fair,
then the same average Pareto-efficiency gap is bounded by
2 · (1+ log(N )) if N ≤ M and N+M

N · (1+ log(N )) otherwise
(Theorem 6, [20]).

III. EXTENSIONS OF CLIENT-CENTRIC RAT SELECTION
A. HYBRID CONTROL
Hybrid control extends the concept of client-centric control
of RAT selection in HetNets to allow for network-assistance
in the RAT selection process. This type of shared control
preserves the client’s right to make the final decision on when
and where to switch, but gives the network some input in the
switching itself, such as providing information on network
metrics such as load balancing. This added information is
useful because the purely-local view of the network observed
by fully-distributed client-centric RAT selection is not guar-
anteed to be accurate. Operating under this limited perspec-
tive can lead to suboptimal behavior when a client simply
ignores the effect of its presence upon other users. Several
works address this by allowing the network to inform clients
with some global knowledge such as [21]–[24] for example.

A broadcast technique to inform clients making local deci-
sions of network conditions is used in several approaches
[22], [23]. In [22], the authors designed a BS association sys-
tem for HetNets in which base stations broadcast both their
current weighted load and price. These parameters are then
used by clients to select and associate to the base station that
best satisfies their utility. Under this service model, clients
are assisted to make the best decision even under mobil-
ity, and can even assign individual applications to different
interfaces.

This is taken one step further in [23] where the authors
develop a low-complexity distributed algorithm that uses
gradient descent dual-decomposition to split the multi-homed
joint RAT association problem into two distinct subproblems
of identifying the optimal BS at the client, and updating a
BS-specific multiplier to be broadcast after each iteration at
the BS. The Lagrangian multiplier acts as the price of the
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BS determined by its load, and performs a sort of
load-balancing in the network itself.

The authors in [24] develop a distributed algorithm in
which the clients do not directly compete to maximize
throughput–instead, they associate to BSs in a way to max-
imize the total reward obtained from the BS in order to
prevent selfish behavior. The reward assigned by each BS is
dependent on the loss of throughput incurred for other users
due to association based on marginal cost pricing [25].

Theoretical results for generalized distributed client-
centric RAT selection in HetNets with prioritized service
were analyzed in [21]. Both a purely client-centric and
the hybrid association model were analyzed, and showed
that purely client-centric association with generic weights
can result in infinite oscillations; but under several specific
classes of weighted priorities, convergence can be guaranteed
for the system. Tight polynomial and linear bounds are found
for the client-centric model, and that the proper selection of a
potential function by the network can guarantee convergence
of the system.

Assignment problem approaches for traffic offloading in
HetNets for femto have also been proposed [26], [27] that find
optimal association. Compared to the above works, matching
schemes explicitly allow for indirect negotiation between
clients and BSs in allocating network resources. Instead
of providing a price parameter to clients, these approaches
directly rank clients for each BS in terms of how well a
potential BS may maximize the client or network metric.

In [26], the problem of achieving proportional-fair
throughput for client-RAT association in HetNets is trans-
formed into an equivalent matching problem, which can be
solved in polynomial time. This exchange, where the BSs
iteratively announce their price of association, and clients
submit bids for resources, results in a global reduction for
macrocellular traffic of up to 30% compared to several non-
cooperative game-based strategies.

A preference list approach is used in [27] to find a stable
matching between clients and femtocells for uplink. In this
setup, both clients and BSs rank each other based on prefer-
ence functions that capture clients’ utilities which depend on
packet success rate, delay, and small cells’ incentive to extend
macrocell coverage. The game is solved using two phases
involving admission games that allow transfers between BSs,
followed by data transmission, with performance improve-
ments of up to 23% compared to a best packet success rate
algorithm.

Although the network may provide some additional infor-
mation, the ultimate decision to switch still rests on the client
itself–and in the absence of perfect, global knowledge, the
client will need to discover how it should associate with the
BSs to meet its objective. Online learning techniques such as
reinforcement learning [28] and multi-armed bandits [29] are
among some of the methods used to explore and exploit the
spectrum resources that are accessible to a client.

Q-learning is used in [28] to learn the client-specific bias
values for received power in order to perform cell-range

expansion for HetNets. By using these individualized bias
values over a common bias over all UEs, the system is a
multi-agent system that leverages distributed learning where
information is never shared. The costs are reported back to
the clients from the BSs and are used to update the Q-values
for future ranking of RATs for association.

B. FAST TIME VARYING RATs (mmWAVE)
Several white papers by several industry groups
predit [4], [5], 5G wireless systems will provide, at the very
least, higher data rates (between 10 Gbps in an indoor office
environment to 25 Mbps in a very dense crowd, with an
average of 50 Mbps for general use), end-to-end latency on
the order of 1 ms, and handle up to 150, 000/km2 connections
in a crowd-like environment.

The key elements of 5G identified by many telecom com-
panies are [30]–[32]:
• Peak Data Rate: 10 Gbps per client, 4x that of 4G
• End-to-End Latency: 1 ms, 1/50 that of 4G
• Scale of Connections: 1 million/km2, 100x that of 4G
In order to meet these goals, 5G will not only require

access to diverse (licensed, shared licensed, and unlicensed)
spectrum [32], [33], but leverage new spectrum bands from
400 MHz to 100 GHz [34], [35] and to create capability to
handle dense HetNets [36].

Millimeter-wave (mmWave) radio technologies is increas-
ingly looked at as one of the primary new RATs for 5G given
the scarcity of spectrum at microwave frequencies [37]–[39].
A combination of cost-effective hardware, high-gain and
steerable antennas, larger carrier bandwidth allocations all
translate to higher data rates for mmWave communica-
tions for small-cell and indoor applications on the order
of 200m [40], [41]. However, mmWave is also characterized
by higher path-loss exponents and an inability to penetrate
obstructions such as the human body.

There exist many studies on mmWave wireless commu-
nication in the 60 GHz band [42]–[46]. These studies char-
acterize the free space propagation loss and the higher loss
due to attenuation from non-Line-of-Sight (NLOS) channels.
However, these bands may not be suitable for cellular due
to the unlicensed nature of this band and the coexistence of
802.11ad, and the primary candidates are 28, 38, 71-76 and
81-86 GHz for indoor applications [47].

Outage studies for 38 GHzwere done in Texas in 2012 [48]
and the first statistical channel models were measured for 28
and 73 GHz in dense urban neighborhoods (New York City)
in 2013 [49], which analyzed a range of parameters: path
loss, shadowing,mmWave line-of-sight(LOS)/NLOS/Outage
probabilities, angular orientation of the BSs and clients, and
number of clusters. Furthermore, the authors showed strong
evidence for the existence of a third state, Outage, charac-
terized by a complete loss of signal, and proposed modeling
mmWave with a three-state channel model defined by the
degrees of signal obstruction.

mmWave technology is particularly sensitive to obstruc-
tion, with drastic changes in the path-loss exponent for
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different mmWave frequency bands [39]. These increase
from values of 1.8 and 2 for 28 GHz and 73 GHz with a direct
line-of-sight component to values upwards of 4.5 and 2.69
once the direct path is blocked. Furthermore, human-body
blockage can have a significant effect on signal quality, with
attenuation between 20-35dB [50], [51] with the loss of the
line-of-sight.

However, with exceedingly high throughput upwards of
10+Gbps for 73GHz demonstrated only in the past year [52],
a large path-loss exponent only helps the case that these high
throughput mmWave BSs can be used as dense small cells
in HetNets to handle extremely high throughput and high
volume traffic.

In [29], the authors apply online learning using multi-
armed bandits to RAT Selection for HetNets with fast-
changing mmWave channels to maximize throughput while
minimizing parameterized switching costs, with optimal total
regret. Limited feedback from the BS in the form of a param-
eter describing the channel state between client and BS is
sent to each client, and the client then uses this knowledge
of the channel to discover and exploit the ‘‘best" BS in terms
of average throughput using a upper-confidence-bound-type
algorithm in which the client is only allowed to switch BS
associations at specific times. An alternative approach that
also leverages the Markovian nature of channel state changes
is considered in [53], which directly considers dynamic chan-
nel load and link quality but not switching costs. However, the
use of mmWave in HetNets is a relatively new area of study,
and there remain lots of work to be done to better understand
how to interchangeably usemmWave alongside other existing
networks.

C. NOISY INFERENCE OF CLIENT METRICS
In order for client-centric BS association algorithms to func-
tion correctly, they require a method for differentiating one
BS from another to determine which is optimal for associ-
ation. These metrics depend on the concerns of the client,
which may vary for different applications (e.g. maximizing
throughput for bandwidth-hungry video or minimizing end-
to-end latency for web applications). Thesemetrics are highly
sensitive to noisy estimates, and can become a bottleneck to
optimal association of clients to BSs. In the ideal situation,
this information could be accurately inferred at the client
given some additional knowledge, or provided by the BS
that performs some asynchronous calculation; however, in the
general case this cannot be assumed.

Inaccurate inference can result in a variety of inefficien-
cies [20]. First, oscillations may result if a client can fre-
quently switch between two different valuations of distinct
BSs, causing it to repeatedly associate to one BS only to
switch to the other. This frequent change in available through-
put and load on the BSs in question can have an adverse
impact on other clients in the network, resulting in a cascad-
ing effect where one oscillating client can cause oscillations
to propagate throughput the network as other clients see their
throughputs and latencies change due to incorrect switching.

Next, incorrect inference may not result in optimal achieved
metrics for the client: inference errorsmay result in inefficient
or incorrect BS associations, leading to suboptimal metrics.
Furthermore, additional costs can be incurred: switching
between different BSs (and indeed different types of RATs
as well) require that the client and network set up a new
connection and tear down the old one in a handover process
which consumes both time that could be otherwise used for
downloading/uploading data, as well additional battery. For
such power-limited devices such as smartphones and mobile
devices, it is highly undesirable to allow noisy estimates and
inferences to cause oscillations and incorrect switches.

One solution to this is to adapt the decision threshold for
switching (e.g. η in [20]) in a client-centric control algo-
rithm to the ambient noise in the inference. By learning
the distribution of inference noise on each BS, it is pos-
sible to negate its impact (e.g. by subtracting the worst-
case empirically observed error) on the ranking of the BS.
By increasing the required gain in predicted metrics required
to initiate a switch between BSs, the client can switch more
conservatively. However, the system becomes less likely to
switch with an increased decision threshold–and it is less
likely to make smaller corrections in client-BS association
that would increase the overall efficiency of the network.
Decision thresholds that control switching in client-centric
control algorithms can be used as a control knob–a tun-
ing mechanism that controls both convergence speed and
resiliency to noisymetric inference. By increasing the switch-
ing threshold, clients switch less frequently and are more
resilient to noise–but lose out on optimality.

D. MULTIHOMING
In addition to single RAT selection, a plurality of RATs may
be selected and multiplexed by the client. Compared to single
RAT selection, the multi-homed scenario is much more chal-
lenging because in addition to decidingwhichRATs should be
used, an additional decision of howmuch each RAT should be
used must be made (assuming finite backlog of traffic). In the
context of Section II-B, the network association variable Xi,k
is no longer integer, and constraint in Eq. 5 instead becomes:

0 ≤ Xi,k ≤ 1 (10)

and the number of RATs each user can connect to Ki > 1.
While at first glance, the multi-homing problem may seems
simpler since the variables are no longer integer, solving the
problem can still be challenging depending on the form of the
throughput model (e.g., Eq. 7). Moreover, additional practical
issues such as throughput estimation and feedback, protocol
design, and application-specific performance must also be
considered.

As a specific example of the multi-homed problem for-
mulation, consider the case of video streaming, which domi-
nates data traffic on today’s Internet. Video streaming differs
file transfer or web browsing in that video is encoded and
streamed at a (roughly) constant rate. The large video file
is usually split into several smaller pieces, or ‘‘chunks’’,
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TABLE 2. Comparison of approaches to multi-homing.

which are downloaded at regular intervals from the server.
Whenever the client requests a video chunk, the video chunk
should be downloaded quickly in order to avoid video stalls
and meet the playback deadline. The question, then, is what
fraction of the chunk should be requested on each RAT,
in order to satisfy the video rate requirement C (in bits)
while minimizing the chunk download time? The model in
Section II-B is flexible and can accommodate this by defining
the utility function as:

Ui = −max
k

{
Xi,kC
ωi,k

}
(11)

with new constraint: ∑
k

Xi,k = 1 (12)

(11) defines the utility as a function of the video chunk down-
load time across all RATs, i.e., we are minimizing download
time so that the video buffer grows and the chance of stalling
decreases. (12) says the sum of the fractional allocations of C
is equal to one. The variable Xi,k is the fraction of bits sent
over network k .

Next, we survey some recent works on multi-homing,
which we also summarize in Table 2. In the transport layer, a
major standardization effort towards enabling multi-homing
on the Internet today is multipath-TCP (MPTCP) [61].
MPTCP creates multiple subflows out of a single TCP flow,
each of which can be bound to a different RAT. This pooling
of resources can enable higher throughputs, easier mobile
handovers, and improved path diversity for failure recovery;
but the challenges include backwards-compatibility with reg-
ular TCP and overcoming middle-boxes who do not recog-
nize or permit MPTCP options. The IETF has standardized
MPTCP [61], but measurement studies thus far have shown
limited adoption in the public Internet [62].

To perform rate adaptation for client-controlled HetNets,
several MPTCP congestion control algorithms [54]–[56]
have been proposed. Specifically, the main control mecha-
nism is the per-subflow congestion window, which changes
the sending rate of each subflow based on the congestion
of each RAT. Various objectives have been proposed, such
as TCP-friendliness [54], Pareto-optimality [55], and utility
maximization [56]. The sending rate is further complicated by
scheduling algorithms that run on top of congestion control,
breaking ties if there are multiple subflows with space in
the congestion window [63]. In both congestion control and
scheduling, each client uses local measurements of conges-
tion (e.g., RTT), so the approach is distributed, but somework
has been done on proving convergence to a globally optimal
solution [56].

Other transport-layer approaches apart from MPTCP have
also been considered, such as [64], which uses multiple
single-path TCP connections on multiple RATs and devel-
ops Markov models for analysis. [65] proposes an approach
that is particularly geared towards wireless networks with
packet losses, and uses explicit congestion notification (ECN)
as well as forward error correction (FEC) to recover from
losses.

While transport-layer protocols tend to optimize for tra-
ditional QoS metrics such as throughput, latency, and loss,
application layer-based multi-homing can consider addi-
tional factors such as economic cost and content sharing.
Application-layer solutions, while not standardized, may
enable more rapid adoption, since end-to-end transport-layer
protocols need not be modified. Several creative uses for
multi-homed devices have been proposed. Reference [58]
considers scheduling for mobile devices where the user can
explicitly specify RAT preferences (e.g., user does not want to
use LTE due to monetary cost), and applications can explic-
itly specify which RATs may be used (e.g., video requires
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RATs with high throughputs). The resulting scheduler is a
generalization of deficit round-robin. Reference [66]
studies rate allocation in the multi-user case, based on video
characteristics and network measurements of throughput and
latency. Their optimal solution depends on knowing video
packet distortion characteristics, while their practical solution
is based on H∞ control theory. Reference [60] studies multi-
homing from the perspective of a cellular operator who
manages both cellular and WiFi networks. The operator
wishes to assign users to WiFi and LTE networks to both
maximize utility and minimize cost, and takes a centralized
optimization approach. Reference [59] proposes using each
RAT for different functionality: the cellular connection is
used to download videos, andWiFi is used to share the videos
amongst a group. A combination of network coding and
pseudo-broadcasting help ensure that the content is delivered
reliably and efficiently.

On the implementation side, [67] demonstrates an Android
prototype of multi-homing using virtual interfaces, similar to
the MPTCP design. Reference [68] focuses on video stream-
ing and prototypes a custom YouTube player that integrates
with the existing YouTube library. MPTCP has also released
open-source Linux kernels for desktops, Android phones,
routers, and cloud services.

E. Wi-Fi OFFLOADING
Opportunistic client-centric switching based on local avail-
ability of non-cellular networks in HetNets has already
been well-studied in the context of 802.11 Wi-Fi over
different timescales (sub-second to tens of seconds and
more) [69]–[71], and much of it remains applicable to
HetNets in a 5G environment. Wi-Fi networks have been
shown to be a high capacity option for offloading traffic from
cellular networks, accepting 65% of total mobile client traffic
while saving 55% of the battery by only offloading data to
Wi-Fi when the network is available [69].

The Wiffler system [70] has also shown up to a 45%
reduction in cellular workload for data with a delay tolerance
of up to 60 seconds. By leveraging delay tolerance of different
types of data and fast switching, Wiffler is able to route
data from one RAT to another if the first BS is unable to
satisfy the traffic delay requirements. The system is able to
opportunistically leverage the offloading capacity of Wi-Fi
networks (if present), and fall back upon other traditional
cellular networks if no Wi-Fi networks that can satisfy data
delay requirements is within reach.

The authors in [71] have gone further, developing client-
stored models of daily mobility in order to perform pre-
dictive forecasts for the mobile client’s radio environment.
By leveraging the habitual behavior of people taking similar
paths during their daily lives and combining past wireless
measurements, a system for determining typical Wi-Fi BS
quality and client location can generate connectivity forecasts
of which Wi-Fi BSs can be available to in the future, and can
assist in opportunistic client-centric data offloading, though
the system requires some training.

Many works also address Wi-Fi offloading in the
presence of some network prediction. This has been studied
for integration of cellular-and-WLAN networks [72], which
supports network discovery and selection to help clients
discover non-cellular networks. In [73], HotZones, uses pre-
diction to download delay-tolerant content when close to
Wi-Fi BSs. It creates a rank-ordered list of most frequently
visited BS based on past client behavior. This profile is shared
with the network operator, and the total aggregate list is
broadcast to all clients–in effect, bypassing the high overhead
of opportunistic scanning for higher-throughput Wi-Fi RATs.
Clients may then connect to various Wi-Fi BSs as they wish
with the added knowledge of a measure of load on those BSs,
and are found to be able to offload up to 70% of their cellular
traffic to those BSs.

Large-scale city traces of mobile clients over the course of
30 days were used in MADNet [74] to evaluate the gains of
citywide (San Francisco) Wi-Fi offloading using metropoli-
tan BSs. It allows the cellular network to reduce load by
signaling over cellular, but performing download/uploading
over Wi-Fi based on explicitly defined client preferences.
More than half of cellular traffic was offloaded, and file
transfer delay was reduced by more than 50% in the majority
of requests.

Many of these client-centric approaches remain valid for
HetNets with 5G, as the ubiquitous deployment of Wi-Fi
for both indoor and outdoor coverage and offloading is not
expected to be replaced anytime soon. These techniques may
also be extended for unmanaged 5G RATs deployed as small
cells in both licensed and unlicensed spectrum, however these
techniques must be updated so that they function on the faster
timescale of 5G mmWave RATs (e.g. order of milliseconds)
in an efficient way. Opportunistic use of these RATs in the
home or office environment within a single room or a floor
has the potential to maintain the benefits of load balanc-
ing and coverage of Wi-Fi offloading, but also to exploit
the higher throughput potential of 5G technologies such as
mmWave.

F. GAME THEORETIC ANALYSIS
Noncooperative game theory, in which individual clients
make local decisions to maximize individual payoffs without
a means to enforce restrictions on the behavior of other
clients, is often used for fully-distributed coordination with-
out any sort of management from a non-client party–which is
the case for Distributed RAT Selection. In this model, the set
of players is the set of clients, and the set of player strategies
is the set of BSs (or RATs) that they may associate with at a
given time. A game of this type is said to have converged to
a Nash Equilibrium (NE) if each player considers its selected
strategy to be optimal given the choices of all other players–
that is, it cannot unilaterally improve its payoff by changing
strategies.

A common class of techniques for distributed coordi-
nation is found in the area of noncooperative congestion
games [75], [76], where players select from a common set

2850 VOLUME 5, 2017



M. Wang et al.: Survey of Client-Controlled HetNets for 5G

of strategies to play and the reward of each strategy is a
monotonically nonincreasing function of the total number of
players playing that strategy [77]. In [75], by considering
an entire type of RAT to be a single BS in a congestion
game framework, a finite improvement path can be found
for the congestion game where each asynchronous client can
selfishly switch to reduce their cost until a NE is reached.
However, to implement this, the authors caution that to reach
a pure NE requires exact information on incurred cost, which
may be difficult to obtain in a timely and accurate manner.
The authors in [76] model downlink access to multiple broad-
band BSs as a congestion game, which models the client- and
BS-specific cost of association as the congestion impact on
other clients sharing the same network. By abstracting away
the multi-rate property of HetNets, tight analytical bounds
for the price of anarchy and price of stability (ratio between
the value of the ‘‘best/worst" equilibria points and an optimal
solution) are found.

Evolutionary games, in which groups of clients select
strategies to play against clients from other groups, have
also been considered [78], [79]. In [78], a population game
for multihomed RAT association is studied for 802.11 under
evolutionary dynamics. Prices based on channel occupancy
and total throughput in the cell are used to calculate payoff
functions for each client to calculate a potential function for
the population game, and it is shown that the stationary points
of such a game are asymptotically stable and maximizes
throughput. In [79], an evolutionary game is used to perform
client-driven network load balancing between different types
of networks (specificallyWMAN, cellular, andWLAN). Two
solutions to obtaining evolutionary equilibrium are presented.
The population evolution solution relies on coordination
between clients to share knowledge of the average payoff
in a given area, so that underperforming clients may change
networks; and reinforcement learning leverages Q-learning to
explore and rank the different networks for optimal empirical
payoff.

G. PROBABILISTIC ANALYSIS
Markov Decision Processes (MDP) have also been used to
model the HetNets RAT selection problem at the client side
[80]–[83]. Clients may internally store empirical knowledge
on the rewards (e.g. throughputs) obtained in each state
(e.g. BS) that are accessible, as well as their transition prob-
abilities. Every time period, the client must make a decision
on which action to take–which RAT or BS to associate with,
in order to maximize some expected total reward.

[80] develop a MDP model for vertical handoff between
different types of RATs, that considers the link reward for
connecting to a BS, the signaling load and processing load
when the handoff is performed. The algorithm relies solely
on implicit feedback from the network in the link reward
obtained after connecting to the BS, and shows improvement
over several other algorithms for vertical handoff.

Markov chains can also be used to explicitly model
ongoing voice and data sessions on individual RATs [81].

With the assumption that calls and data sessions begin and
end sequentially (they arrive/depart individually) and that
the total traffic offered to both networks are known, this
work develops a 4D Markov Chain to model two TDMA and
WCMDA networks in order to simulate the performance of
several RAT selection policies.

Application-specific models can also be used, such as for
Video-on-Demand [82]. In this work, multihomed clients
optimize their choice of RATs for the minimization of video
playback disruption costs and the communication cost of
receiving a video chunk over a given RAT. The MDP is used
to determine which RAT to send a chunk request to at a given
time, and the resulting adaptive ATAC policy is shown to have
lower costs than policies with static thresholds for request
allocation.

IV. CURRENT STATE OF THE INDUSTRY
The goal of HetNets is to enable the seamless association,
data-transfer, BS switching, and dissociation for a client to
a set of wireless networks of different types, in a way that
maximizes the aggregate utility of the clients and networks
involved.With such a vast number of different types of RATs,
each with different specifications, effective transmit/receive
ranges, supported data-rates, and speed of channel changes,
finding a simple unifying algorithm for HetNets has been a
question that many organizations in industry have considered.

There are several obstacles to developing a common
approach to the integration of new technologies such as
5G into the HetNets architecture, such as noise, fast tem-
poral variations, hybrid control schemes, multi-homing and
load balancing. Recently, industry groups such as 3GPP and
IEEE have been pressing forward with standardization ini-
tiatives to enable HetNets for existing technologies, as well
as laying the groundwork for next-gen 5G technologies such
as mmWave.

In Release 12 [84], multiple enhancements were released to
improve client mobility in HetNets for both LTE and UMTS,
including cell discovery (client-based discovey, network-
based discovery and collaborative client and network-based
discovery), and general enhancements for small cell deploy-
ments. Furthermore, 3GPP has included standardization for
dual connectivity (simultaneous multihoming to both macro-
and microcells by clients) [85], allowing for dynamic traffic
routing over multiple paths.

However, on the core philosophy of where in the network
HetNets control should reside, the debate is still ongoing
in 3GPP, between centralized solutions that place client-
BS association decisions in the network, distributed solu-
tions that place client-BS association decisions strictly on
the client, and the hybrid approach, where the association
decision is made by the network guiding clients in the asso-
ciation process. Several different techniques have been pro-
posed [86], ranging from client-centric BS selection with
network assistance (broadcasts) and with network assistance
and network-advised policies, as well as network-controlled
BS selection with network-determined policies.
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Without a solid determination of who should control BS
selection and where that intelligence shall be placed, many
industry leaders in the consumer electronics world have been
moving forward with their own homegrown approaches to
managing access to HetNets. In the past, Apple Inc. had built
their flagship smartphone, the iPhone, such that it automat-
ically offloaded the client onto Wi-Fi wherever possible in
order to decrease use of the client’s subscribed data plan.
Furthermore, in early 2016, Apple introduced Wi-Fi Assist,
a feature that detects a poor Wi-Fi signal and automatically
switches the mobile device back to using data from your
cellular plan [87].

When theWi-Fi Assist feature was released, however, there
was a large backlash against Apple because many device
owners were either uninformed or unaware of the feature
which resulted in individuals incurring thousands of dol-
lars worth of data overage charges due to inadvertent data
use [88]. This approach, although done in the best interest of
maximizing quality of service by finding the BS with the best
signal, clearly demonstrates the overall failure of the system
when it is designed to optimize an objective or metric that
doesn’t match that of the client (in this case, total monetary
cost was not considered) even though the BS association
ostensibly gave full control to the user.

V. CONCLUSION
As the growth of computational power on the mobile client
device grows, it is increasingly possible to leverage the tech-
niques discussed in this survey work to place the intelli-
gence for RAT selection on the network edge, literally in
the hands of the user. With massive amounts of machine-
type communication and the rise of IoT on the horizon,
traditional centralized decision schemes where a centralized
controller gathers channel information from all users about
their channel conditions and local radio environment is no
longer tenable for the massive scale that can be expected from
the rise of these new networking trends for smart home, smart
office, and smart everything.

Therefore, new network selection approaches must be
developed for HetNets in the context of 5G that can take
advantage of the capabilities available on the network
edge–some of that work has already begun. However, many
questions still remain to be studied in detail:
• Network Assistance for Client-Centric HetNets. To
what degree should the client be autonomous in selecting
a RAT for association? There is a vast gulf between
fully-distributed approaches and hybrid solutions that
leverage a degree of network assistance.

• Objective Formulation. How should the objective
be designed for client-centric RAT association? Many
approaches involve network-centric or client-centric
objectives, but perhaps a combination of the two can
balance the needs of both the network and the client.

• Performance Gap. How worse off will these
client-centric solutions be compared with a central-
ized implementation with global knowledge? Can this

gap be quantified in terms of Price of Anarchy or
Stability?

• Timescales.The temporal variability of the channel con-
ditions of newer RATs (e.g. mmWave) may be different
from existing technologies: How should RAT Selection
algorithms account for this difference in timescales of
channel variation?

Furthermore, there have been additional criteria that tend to
be assumed in discussions on HetNets–but are not necessarily
guaranteed. These criteria simplify analysis, but cannot be
assumed in the general case:
• Quota. The mobile device’s data quota is assumed to be
infinite, and it always has a positive marginal utility for
downloading or uploading more data.

• Battery. The battery capacity of the mobile device is
assumed to be infinite, and many of the works in this
survey do not consider the joint problem of RAT selec-
tion under explicit finite power constraints.

• WiFi Coverage. Smartphones and mobile devices are
assumed to always have access to an alternative network,
and it is always possible to access both cellular and
Wi-Fi networks, which may not be true in certain
scenarios (e.g. rural settings).
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