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Abstract—We study the convergence properties of distributed
network selection in HetNets with priority-based service. Clients
in such networks have different priority weights (e.g., QoS
requirements, scheduling policies, etc.) for different access net-
works and act selfishly to maximize their own throughput. We
formulate the problem as a non-cooperative game, and study its
convergence for two models: (i) A purely client-centric model
where each client uses its own preference to select a network,
and (ii) a hybrid client-network model that uses a combination of
client and network preferences to arrive at pairings. Our results
reveal that: (a) Pure client-centric network selection with generic
weights can result in infinite oscillations for any improvement
path (i.e., shows strongly cyclic behavior). However, we show
that under several classes of practical priority weights (e.g.,
weights that achieve different notions of fairness) or under
additional client-side policies, convergence can be guaranteed;
(b) We study convergence time under client-centric model and
provide tight polynomial and linear bounds; (c) We show that
applying a minimal amount of network control in the hybrid
model, guarantees convergence for clients with generic weights.
We also introduce a controllable knob that network controller
can employ to balance between convergence time and its network-
wide objective with predictable tradeoff.

I. INTRODUCTION

Heterogeneous networks (HetNets) have emerged as one
of the key features for addressing the capacity and QoS
demands of future 5G networks. The architecture comprises
hierarchical, multi-tier deployment of base stations (BSs)1 with
different footprints, which potentially operate over different
access technologies. An important question that arises in such
networks is how should the clients be paired with BSs?

As WiFi becomes an integral part of cellular operators’
strategy to address traffic demand, cellular operators desire
more control on how to pair clients with BSs. At the same
time, consumer device vendors also demand more control
over client-BS pairing (e.g., to give the client control over
its preferred network, to provide flexibility for device imple-
mentation constraints and propriety algorithms, etc.). For this
reason, the client-BS pairing is an actively discussed topic in
relevant standard meetings. For example, the Third Generation
Partnership Project (3GPP) has been trying to specify inter-
working solutions between cellular technologies (e.g., LTE,
3G, femto, etc.) and IEEE 802.11 (WiFi) technologies [1],
[2], [3].

The following solution candidates for the WLAN-
UTRAN/E-UTRAN (UTRAN/E-UTRAN2 is referred to as

1A generic term that denotes AP in WiFi, NB in 3G, eNB in LTE, etc.
2Collective terms for the (e)Node Bs and radio network controllers which

make up the (evolved) UMTS radio access network.

“RAN" in the remainder of this paper) access network selec-
tion have been recently identified [1]: (i) In the first solution,
RAN provides assistance information to the clients. A client
then uses RAN assistance information, client measurements,
and information provided by the WLAN to steer its traffic
towards a BS in WLAN or RAN; (ii) In the second so-
lution, the offloading rules are in RAN specification. The
RAN provides (through dedicated and/or broadcast signaling)
thresholds which are then used in the rules. The client then
follows RAN rules to steer its traffic towards WLAN or 3GPP;
(iii) In the third alternative, the traffic steering for the client is
fully controlled by the network using dedicated traffic steering
commands, potentially based also on WLAN measurements
(reported by the client).

In this paper, we study the first two models identified by the
standard, i.e., purely client-centric solution, and hybrid client-
network solution3. We model the network selection problem
as a game termed “network selection game" with priority-
based weights, and study its equilibria properties. The priority
weight is a generic term introduced in this paper that can
depend on the specific client, BS, or both; and is introduced
to capture several practical issues in HetNets such as queuing
and scheduling policy at the BS, QoS requirement of the client,
packet size, etc. Next, we propose a generic wireless access
throughput sharing model that captures the basic properties
of different access networks (e.g., WiFi, 3G, LTE, etc.) while
employing different priority weights and transmission rates for
clients. Finally, we analyze important properties of equilibria
in these games, such as existence of equilibria and convergence
time. In particular, we make the following contributions:
• We study the existence of equilibria for the client-centric so-

lution, and provide an example with 3 clients and 3 BSs for
which any improvement path (i.e., better/best response) can
oscillate infinitely [Theorem 1]. Despite this negative initial
result, we prove convergence for the following scenarios: (i)
When weights are selected in a particular manner [Theorems
2, 3], or (ii) when clients observe additional constraints
when switching their BSs [Theorems 4, 5]. We also show
that the particular weights that guarantee convergence in
case (i) realize different fairness objectives such as max-
min fairness, harmonic fairness, etc.

• We provide tight bounds on the convergence time of client-
centric solution. While the best bounds from other game
theoretic models that can potentially be applied to our

3Both of these are in the spirit of “fog networking:" the cloud descending
to client devices for both the data-plane and control-plane of the network.
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problem have exponential computational complexity, we
derive a low degree polynomial [Theorems 6, 7, 8] and
linear [Theorem 9] bounds on convergence time.

• We study if and how supervision from network can guar-
antee convergence to desired equilibria. In particular, we
show that minimal network control over clients’ decisions
to switch can guarantee convergence to equilibria with
generic weights, and also guide the system to converge
to an equilibria close to the network objective, all with a
predictable convergence time. We introduce a controllable
knob that can be employed by network to balance between
how fast it converges and how close the equilibria are to
network operator’s objective. We also show how to tune the
parameters for several practical network-wide objectives,
including load balancing.

• We perform extensive simulations to characterize equilibria
properties under different policies. Our results reveal that
pure client-centric solutions converge to equilibria polyno-
mially with respect to the number of clients, confirming
tightness of our convergence time bounds. We also show
that network control policies achieve throughput values that
are closer to network objective, and with an average lower
time complexity. The results highlight the potential of the
hybrid solution for adoption by the industry.
This paper is organized as follows. We discuss the related

work in Section II. We present our system model in Section
III. In Sections IV and V we investigate the existence of
equilibria and convergence time properties of purely client-
centric network selection, respectively. We study convergence
properties of hybrid client-network model in Section VI. We
present the results of our simulations in Section VII. Finally,
we conclude in Section VIII.

II. RELATED WORK

Network selection is an actively researched topic in HetNets
(for a survey please refer to [4]). We discuss papers which are
most relevant to our work.

Theory of Congestion Game: Congestion games [5], [6]
model the negative congestion effects when users compete for
limited resources. For formal definitions and most important
results, please refer to [7]. These games have been extensively
leveraged in networking problems such as wireline routing
[8], wireless spectrum sharing [9], [10], [11], wireless access
point selection [12], [13], [14], etc. The priority-based network
selection game studied in this paper falls into the generic
category of congestion games with client-specific preferences
and costs [15], which is not fully understood due to the
generic structure of the problem. On the other hand, the notion
of priority weights studied in this paper can capture several
important characteristics of today’s networks (e.g., from BSs
implementing different notions of fairness to heterogeneity in
users’ applications, QoS requirements, and packet sizes). We
derive several theoretical results clearly motivated by practical
needs for the priority-based network selection problem. Our
results provide substantial improvements over known results
in congestion games.

Game Theory of Network Selection: Network selection
has been studied using Game Theory via several models
including non-coopertive [12], [13], [16], evolutionary [17],
[18], etc. Evolutionary games assume a very large number
of clients where a single client has minimal impact on other
clients. This is not the case in our problem in which a single
client can have major impacts on other users’ decisions. Our
introduction of priority-based service generalizes the proposed
non-cooperative models [12], [13], [16], whose results are
derived assuming a unity priority weight across different BSs.
By introducing the notion of priority weights, we analyze
several important characteristics of today’s networks with het-
erogeneous clients, packet sizes, application QoS requirement,
etc. Further, we address the problem of network assistance and
show that minimal network control can have major impact on
the desirability of equilibia.

III. SYSTEM MODEL

In this section, we present the system model and propose
a generic BS throughput sharing model that captures the
properties of both random and scheduled access networks.

A. Network Model
We consider a heterogeneous wireless network deployment

which is composed of a set of BSs K = {1, ...,K}, and a set
of clients N = {1, ..., N}. Each client i ∈ N is allowed to
choose its preferable BS from a subset of K. We assume that
all BSs are interference-free by means of spectrum separation
between BSs that belong to different access networks, and
frequency reuse among BSs of the same network. Given the
current consumer device capability, we assume that each client
sends/receives its traffic only through a single BS at any
given time. Nevertheless, clients still are capable of probing
the spectrum and estimate their throughput on the other BSs
(e.g. through beacon messages), and switch to a desirable
BS with better expected throughput. We consider a priority-
based network selection scheme where clients are assigned
priority weights on different BSs. The weight of a client
on a BS could depend on many factors such as network
configuration, QoS mechanism, economical aspects, etc., and
can be determined by the client, the BS, or both. For example,
802.11e implements QoS by assigning different contention
windows (priority weights) to different clients.

B. Throughput Sharing Model
We define the throughput of client i on BS k (ωi,k) with

weight φi,k as:

ωi,k =
φi,k�

j∈Nk

φj,k

Rj,k

, φik ∈ R+ (1)

Here, Ri,k denotes the instantaneous PHY rate of client i
on BS k and depends on multiple factors such as modulation
and coding scheme, etc. Also, Nk denotes the set of clients
on BS k. Table I denotes the list of notation in this paper.

The throughput representation in Eq. (1) captures a vari-
ety of access mechanisms. For example, consider downlink
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throughput of a client i on a BS k, and assume that the BS
transmits Li bits to each client i in a round-robin manner.
The throughput of client i would then be similar to Eq. (1)
with φi,k = Li. Similarly, uplink throughput of clients on a
WiFi BS that employs QoS by assigning different contention
windows (CWi,k) to clients, can be modeled by Eq. (1) with
φi,k = 2

CWi,k
[19], [20].

Eq. (1) also models the throughput of synchronized access
schemes (e.g., 3G, LTE, etc.). In order to better under-
stand how Eq. (1) models synchronized access (e.g. TDMA)
throughput, set φi,k = λi,kRi,k in Eq. (1). The throughput of
a client then becomes:

ωi,k =
λi,kRi,k�
j∈Nk

λj,k

(2)

Eq. (2) denotes the throughput of clients on a TDMA BS
that allocates λi,k unit of time to each client. If we set λi,k

= 1, then we have ωi,k = Ri,k

Nk
, i.e. a time-fair system which

allocates equal access time to each client. With appropriate
selection of weights in Eq. (1), a BS can achieve different
notions of fairness in different access mechanisms. We will
describe this issue in detail in Section IV.

TABLE I
MAIN NOTATION

N: Set of all clients in the network N : Number of clients
K: Set of BSs K: Number of BSs
Nk: Set of clients on BS k Nk: Number of clients on BS k

φi,k: Weight of client i on BS k ωi,k: Throughput of i on BS k

Ri,k: PHY rate of client i on BS k σi: Strategy Profile of client i
η: Switching Threshold p: randomization parameter

C. Network Selection Games

We model the BS selection problem as a non-cooperative
game, in which clients select their BSs in a distributed
manner to increase their throughputs. In this game, set of
clients (N) represents the players, and the strategy of each
player (client) is its selected BS. Let σi denote the strategy
selected by player i. Then, we define the strategy profile
as a combination of chosen strategies of all clients denoted
by vector σ = (σ1,σ2, ...,σN ). An improvement path is a
sequence of strategy profiles where at each stage, only a single
client changes its BS and strictly increases its throughput by
this migration. A path is considered to be the best response
improvement path if at every step, the migrating client selects
a BS which gives the maximum throughput among all available
BSs. The competition between selfish clients to choose their
BSs may lead to a strategy profile where none of the clients
can improve their throughput through a unilateral change of
their BSs, i.e. a Nash equilibrium.

Clients use a distributed algorithm to select their BSs.
Consider synchronized slotted time for now. Based on the
algorithm, client i migrates with probability p from BS k to
BS k� at time t, if ωi,k� (t+1)

ωi,k(t)
≥ η (i.e., a client expects to

Fig. 1. An example 3 client, 3 BS network selection game, in which only a
single improvement path exists and has cyclic behavior.

increase its throughput by a factor equal or more than η).
The randomization parameter p is envisioned to reduce the
probability of concurrent moves to/from a single BS, which
can lead to oscillations.

IV. EXISTENCE OF EQUILIBRIA

Consider the generic throughput sharing model of Eq. (1).
Our first result shows that with generic weights, a better/best
response improvement path can be repeated infinitely without
reaching an equilibrium.

Theorem 1. There exists an instantiation of Network Selection
Games for which any improvement path repeats infinitely.

Proof: We provide an example with 3 clients and 3 BSs
in Fig. 1 to prove the Theorem. Clients 1, 2, and 3, are initially
connected to BSs 1, 2, and 3 respectively. Consider a sequence
of moves as depicted in Fig. 1. In order to have the cycle, the
following inequalities must hold at every step:

Step 1:(R1,1)−1 ≥ (φ1,2.(R1,2)−1 + φ2,2.(R2,2)−1)/φ1,2

Step 2:(φ1,2.(R1,2)−1 + φ2,2.(R2,2)−1)/φ2,2 ≥
(φ2,3.(R2,3)−1 + φ3,3.(R3,3)−1)/φ2,3

Step 3:(φ2,3.(R2,3)−1 + φ3,3.(R3,3)−1)/φ3,3 ≥
(φ1,2.(R1,2)−1 + φ3,2.(R3,2)−1)/φ3,2

Step 4:(φ1,2.(R1,2)−1 + φ3,2.(R3,2)−1)/φ1,2 ≥ (R1,1)−1

Step 5 : (R2,3)−1 ≥ (φ2,2.(R2,2)−1 + φ3,2.(R32)−1)/φ22

Step 6:(φ2,2.(R2,2)−1 + φ3,2.(R3,2)−1)/φ3,2 ≥ (R3,3)−1

The above inequalities can be validated for an infinite number
of Ri,ks and φi,ks. One example of such selection is:

φ2,2 = φ3,2 = φ1,2 = φ3,3 = 1,φ2,3 = 2

, (R1,1)
−1 = 9, (R1,2)

−1 = 7, (R2,2)
−1 = 1,

(R3,2)
−1 = 3, (R2,3)

−1 = 5, (R3,3)
−1 = 3

(3)

For the selected values, at each step only the specific client
depicted in Fig. 1 can move, and only to the selected BS.
Hence, the cycle exists for any improvement path.

This negative result shows that in generic network selection
games, oscillations can happen infinitely. This motivates us
to study the conditions under which convergence can be
guaranteed. In particular, we study the following: (i) class
of weights that can guarantee convergence, and (ii) client or
network control policies that guarantee convergence.

A. Weights that Guarantee the Existence of Nash Equilibria
Prior results proved convergence properties when the utility

(throughput in our context) of a client falls into one of the two
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categories: (i) if utility of each client depends on the specific
client and the number of clients reside on the same resource
[15], [21], and (ii) if throughput of clients that share the same
resource depends on the specific client combination, but is the
same across the clients on the same resource [15], [22].

Case (i) and (ii) can be realized in our throughout sharing
model of Eq. (1), if we set φi,k = Ri,k (i.e., ωi,k = Ri,k

Nk
) and

φi,k = 1 (i.e., ωi,k = 1�
j∈Nk

1
Rj,k

), respectively.

Thus motivated, we first set φi,k = (Ri,k)β , and study
convergence properties for this class of weights. Different
β values realize different notions of fairness on a BS. For
example, β = 0 results in all clients achieving the same
throughput (i.e., a throughput-fair realization), while β = 1
results in each client receiving a throughput that is client
specific and depend only on the number of clients on the same
BS (i.e., a time/bandwidth-fair realization). With β = 1

2 , we
have ωi,k = 1�

j∈Nk

1√
Ri,kRj,k

.

This specific selection of β is particularly interesting and it
achieves harmonic fairness. Harmonic-fair share of clients on a
BS with throughput model of Eq. (1) is achieved if the sum of
throughput inverse of clients is minimized. Sum of throughput
inverse of the clients is

�

i∈Nk

�
j∈Nk

φj,k

Rj,k

φi,k

=
�

j∈Nk

φj,k

Rj,k

�

i∈Nk

1

φi,k

≥ (
�

j∈Nk

1�
Rj,k

)2

(4)
The final inequality is due to Cauchy-Schwarz, and the

minimization happens when φi,k ∝
�

Ri,k, i.e. with β =
1
2 . Table II shows different notions of fairness that can be
achieved for different β values.

TABLE II
SEVERAL NOTIONS OF FAIRNESS IN NETWORKING CAN BE ACHIEVED BY

APPROPRIATE SELECTION OF β . BELOW WE PRESENT β VALUES FOR
WHICH THE CORRESPONDING GAMES ARE PROVED TO CONVERGE TO A

NASH EQUILIBRIUM.

Value of β Client Throughput (ωi,k) Model Name

β → −∞






Rmin
L

if Rj,k=Rmin
1

0 for other clients.
Min. Throughput

β = 0
1�

j∈Nk

1
Rj,k

Throughput-fair
(Max-Min fair)

β = 1/2

�
Ri,k

�
j∈Nk

1√
Rj,k

Harmonic-fair

β = 1
Ri,k

Nk

Time/Bandwidth-fair

β → +∞






Rmax
H

if Rj,k=Rmax
2

0 for other clients.
Max. Throughput

1(Rmin=minj∈Nk
Rj,k, L= Num of such j

�
s)

2(Rmax=maxj∈Nk
Rj,k, H= Num of such j

�
s)

Convergence properties for two special cases, β = 0 and

1, have been shown in prior work [15], [21], [22]. We next
provide a proof of convergence for β = 1

2 , i.e., harmonic fair.

Theorem 2. Let G be a network selection game with
φi,k=

�
Ri,k ∀ i ∈ N, k ∈ K. Then, G always converges

to a Nash equilibrium.

Proof: Let us define the following potential function for
every strategy profile σ:

S(σ) =
�

m∈K

Ψm(σ)

where Ψm(σ) = (
�

j∈Nm

1√
Rj,m

)
2
+

�
j∈Nm

1
Rj,m

is defined over

the strategy profile σ. Consider a selfish step σi → σ̃i of player
i from BS k to the BS k� which gives the following inequality:

1�
Ri,k

�

j∈Nk

1�
Rj,k

>
1�
Ri,k�

�

j∈Nk�

1�
Rj,k�

(5)

Note that, all BSs m ∈ K\{k, k�} remain intact after i switch.
Thus we have:

�
m∈K\{k,k�}

Ψm(σ) =
�

m∈K\{k,k�}
Ψm(σ̃).

Then by the definition of potential function we have:

S(σ) =
�

m∈K\{k,k�}
Ψm(σ) +Ψk(σ) +Ψk�(σ) =

�
m∈K\{k,k�}

Ψm(σ) + (
�

j∈(Nk\i)

1√
Rj,k

)2 + (
�

j∈(Nk\i)

1
Rj,k

)+

2√
Ri,k

�
j∈Nk

1√
Rj,k

+Ψk�(σ) >

�
m∈K\{k,k�}

Ψm(σ) + (
�

j∈(Nk\i)

1√
Rj,k

)2 +
�

j∈(Nk\i)

1
Rj,k

+

�
j∈Nk�

2√
Ri,k� .Rj,k�

+Ψk�(σ) =

�
m∈K\{k,k�}

Ψm(σ̃) +Ψk(σ̃) +Ψk�(σ̃) = S(σ̃)

The inequality holds due to (5). Therefore, the potential
function monotonically decreases as clients selfishly switch
to new BSs. Existence of potential function gives the proof.6

It is not hard to prove convergence when β = -∞ or β =
+∞ with the methods proposed in this paper. Nevertheless,
whether the existence can be extended to other values of β ∈
R is still an open problem. Since we have always observed
convergence in our simulations for any β value, we pose it as
an open problem:

Conjecture 1. Let G be a network selection game with φi,k =
(Ri,k)β ∀i ∈ N, ∀k ∈ K. Then G always converges to a Nash
equilibrium for any value of β.

When φi,k = (Ri,k)β , we can extend the results further.

6Since the number of BSs and clients is finite, the potential function pos-
sesses finite many states. It is also a positive function with a finite maximum
and minimum. Further, each client’s switch monotonically increase/decrease
the potential. Thus, the switchings cannot continue infinitely and have to
terminate at an equilibrium, i.e., a Nash equilibrium.
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Theorem 3. Let G be a network selection game with φi,k =
(Ri,k)β , ∀i ∈ N, ∀k ∈ K which always converges for the
specific β ∈ R\{1}. Then, convergence is guaranteed for any
new game Ĝ, in which φ̂i,k = ci · (Ri,k)β and ci ∈ R+ is a
client-dependent constant.

Proof: Assume client i moves from BS k to k� in the new
game. Then we have:

ci.(Ri,k)
β

�
j∈Nk

cj .(Rj,k)
β−1

<
ci.(Ri,k�)β

�
j∈Nk�

cj .(Rj,k�)β−1

Let R
�

il
= Ril · c

1
β−1

i
for any l ∈ K, i ∈ N where (β �= 1) .

Replacing these terms into above inequality yields:

(R
�
i,k)

β

�
j∈Nk

(R
�
j,k

)
β−1

<
(R

�
i,k�)

β

�
j∈Nk�

(R�
j,k�)β−1

The new game with rates R
�

i,k
is an instantiation of G and

always converges due to the assumption.
The client specific factor (ci) can model a variety of prac-

tical issues, e.g., client specific cost, application weight, etc.
For example, the throughput of a client in a game Ĝ with β =
0 is equal to ci�

j∈Nk

cj
Rj,k

. Theorem 3 guarantees convergence for

this scenario which models a game when BSs serves downlink
clients in a round robin manner and client i packet size is ci.

B. Policies that guarantee the existence of equilibria

In a practical scenario, it may not be possible to limit the
BS-client specific weight to specific values. Therefore, in order
to stop infinite oscillations and guarantee convergence, we
study whether client or network can enforce policies to guar-
antee convergence. In this section, we study the convergence
properties for different policies employed by clients. We will
study the optimality of converged points through extensive
simulations in Section VII. We defer discussion on network
operator’s policies to Section VI.

When a policy is employed, a client switches its BS if (i)
the client expects to increase its throughput by at least a factor
of η, and (ii) if the policy condition is satisfied. For ease of
presentation, we define Λk(t) =

�
j∈Nk

φj,k

Rj,k
which is the

weighted sum of inverse rate of all clients of BS k at time t.
Policy 1: A client i ∈ N can migrate from BS k to k� at

time t if Λk�(t+ 1) < Λk(t).
Convergence is due to the following theorem:

Theorem 4. Let G be a network selection game where Policy
1 is employed by the clients. Then, G always converges to an
equilibrium.

Proof: Let us define a potential function as below:

S(σ) =
K�

k=1

B
Λk(t), B >> 0 (6)

Consider a selfish step σi → σ̃i of player i from BS k to the

BS k� at time t. Then, the change in potential function is:

S(σ̃)− S(σ) = B
Λk(t+1) +B

Λk� (t+1) −B
Λk(t) −B

Λk� (t) (7)

Based on the second condition of the policy 1 we have:
Λk�(t + 1) < Λk(t). Also, we know that Λk(t + 1) < Λk(t)
since client i has already moved out from BS k. Therefore,
for a very large value of B, the sum of power terms in first
and second term in (7) is always smaller than the third term.
Therefore, we have a potential function which monotonically
decreases whenever clients switch to a new BS.

We next propose two other policies that guarantee conver-
gence:

Policy 2: When client i switches from BS k to k� at time
t, it must expect to achieve the smallest throughput in the
destination BS k�, i.e., φi,k�

Λk� (t+1) ≤
φj,k�

Λk� (t+1) for all j ∈ Nk� .
Convergence is due to the following theorem:

Theorem 5. Let G be a network selection game where Policy
2 is employed by the clients. Then, G always converges to an
equilibrium.

Proof: We define the following potential function for the
strategy profile σ at time t:

S(σ) =
N�

j=1

B
(
Λσj (t)

φj,σj
)
, B >> 0 (8)

Consider a selfish step σi → σ̃i of player i from BS k to BS
k� at time t. Then, the change in potential function due to the
client switch is:

S(σ̃)− S(σ) =
�

j∈N,σ̃j=k

B
(
Λk(t+1)

φj,k
)
+

�

j∈N,σ̃j=k�

B
(
Λk� (t+1)

φj,k� )

−
�

j∈N,σj=k

B
(
Λk(t)
φj,k

) −
�

j∈N,σj=k�

B
(
Λk� (t)
φj,k� )

Based on the condition in policy 2 we have: Λk(t)
φi,k

>

Λk� (t+1)
φi,k�

≥ Λk� (t+1)
φj,k�

for all j on BS k� at time t + 1.

Since B is considered a very large number, then B

Λk� (t+1)

φi,k� >

�
j∈N,σj=k�

B

Λk� (t+1)

φj,k� ( power of a very large number is greater

than the summation of power of numbers smaller than the
large number). Therefore, we have a potential function which
monotonically decreases whenever clients switch to the new
BSs. This completes the proof.

Policy 3: When client i switches from BS k to k� at time t,
its throughput at time t must be smaller than the throughput of
all clients that reside at k� at time t+1, i.e., φi,k

Λk(t)
<

φj,k

Λk� (t+1)
for all j ∈ Nk� .

Proof of convergence is based on the potential function in
Eq. (8) and uses the same methodology as in the proof of
Theorem 5.

V. CONVERGENCE TIME

Beyond the existence of equilibria, we investigate the con-
vergence time properties of network selection games. Similar
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to the analysis in Section IV, we assume that at any given
time only a single client makes a change. With K BSs and
N clients, the number of different configurations is at most
KN . Thus, if G is a network selection game with equilibria,
it converges to an equilibrium in at most KN steps.

By considering potential functions that are similar in spirit
to [22], it is possible to slightly improve upon this bound
and provide a bound with O(2N ) (assuming N � K)
computational complexity. The bound can be derived when
we have φi,k = R

β

i,k
, and β = 0 or 1.

In this section, we significantly improve upon these expo-
nential bounds. We provide polynomial-time bounds for β =
0, 1

2 ; and a linear bound for β = 1. We start our analysis
by considering the case where φi,k = R

β

i,k
and β = 0 (i.e.,

throughput-fair model):

Theorem 6. Let G be a network selection game with φi,k =
1, and let Rmax and Rmin denote the maximum and minimum
PHY rates of clients in G, respectively. Then, G converges to a
Nash equilibrium in at most (1+ � NRmax

Rmin×min(1,η−1)�)
K steps.

Proof: Define Λk(t) for BS k at time t as the inverse of
the throughput of the clients on BS k, i.e.,

Λk(t) =

�
0 if Nk = ∅
�

i∈Nk

1
Ri,k

otherwise

Now assume that a client j migrates from BS k to BS k� at
time t+ 1. Therefore,

Λk(t) > η × Λk�(t+ 1) ≥ Λk�(t+ 1)+ (9)
η − 1

Rmax

≥ Λk�(t) +
η

Rmax

Λk(t) = Λk(t+ 1) +
1

Rj,k

≥ Λk(t+ 1) +
1

Rmax

(10)

From the above equations we have

Λk(t) = max(Λk(t),Λk�(t)) ≥ (11)
max(Λk(t+ 1),Λk�(t+ 1)) +∆

in which ∆ = min(1, η−1)
Rmax

. The above equation allows us
to define an ordering on Λi(t) values that not only proves
convergence, but also provides a bound on convergence time.
In order to achieve this, we first discretize Λ1(t), ...,ΛK(t)
based on intervals of length ∆, i.e., we define Λ̂i(t) = L×∆
if Λi(t) ∈ [L×∆, (L+1)×∆). Here L is an integer between
0 and � N

Rmin×∆� ( N

Rmin
is the maximum possible value for

Λi(t) ∀i, t).
Next, consider an ordering on Λ̂i(t) values, i.e., define

�̂Λ(t) = (Λ̂i1(t), ..., Λ̂iK (t)) if Λ̂i1(t) ≥ Λ̂i2(t) ≥ ... ≥ Λ̂iK (t).
Any client migration strictly decreases the lexicographic order
of �̂Λ(t). On the other hand, there are at most (1 + � N

Rmin×∆�
distinct possible values for each Λ̂ik(t). Thus, the number of
steps for the game to converge is at most (1 + � N

Rmin×∆�)K .

We next derive a bound on convergence time for β = 1
2

(i.e., harmonic fair model).

Theorem 7. Let G be a network selection game with φi,k =
R

β

i,k
, and β = 1

2 . Then, number of steps to converge to a Nash
equilibrium is upper bounded by:

(N2 +N)Rmax

(η − 1)Rmin

Proof: Following the proof of Theorem 2, we have
1�
Ri,k

�

j∈Nk

1�
Rj,k

> η
1�
Ri,k�

�

j∈Nk�

1�
Rj,k�

≥ 1�
Ri,k�

�

j∈Nk�

1�
Rj,k�

+
η − 1

Rmax

(12)

This shows that S(σ) decreases by at least η−1
Rmax

at each step.
On the other hand, S(σ) is bounded by ( N√

Rmin
)2 + N

Rmin
.

Dividing the two yields the bound.
Finally, we present a linear time complexity bound for β =

1 (i.e., time/bandwidth fair model).

Theorem 8. Let G be a network selection game with φi,k =
R

β

i,k
, and β = 1. Then, G converges to a Nash equilibrium in

at most �N × log
η

Rmax
Rmin

+M × log
η
(N)� steps, where M =

min(K,N).

Proof: Define the system state of the network as the set
of BSs and their connected clients. Next, consider a sample
evolution of the system state until an equilibrium is reached.
Denote it as the client that makes a switch at time t, kt as
the BS that the client resides prior to switching, and k�

t
as the

BS that the client joins after switching. Let T denote the total
number of switchings until equilibrium is reached. We have
the following T throughput inequalities corresponding to T

switchings

η × Rit,kt

Nkt

<
Rit,k

�
t

Nk
�
t

∀t = 1, . . . , T (13)

Now, if we multiple all the terms on the right hand sides
and all the terms on the left hand sides, and cancel out all the
common terms we have

η
T × r1r2 . . . ra

N1N2 . . . Nb

<
r�1r

�
2 . . . r

�
a

N �
1N

�
2 . . . N

�
b

(14)

in which ri and r�
i

denote the rate of a client at its first and
last BS, while Nj and N �

j
denote the number of clients on

BSs affected by switchings in the beginning and at the end.
Thus, we have the following inequalities

Rmin ≤ ri, r
�
i
≤ Rmax, a ≤ min(N,T ) (15)

1 ≤ Nj , N
�
j
≤ N, b ≤ min(K,T ) (16)

Leveraging the above inequalities in Eq. (14), we have

η
T
<

r�1...r
�
a

r1...ra
× N1...Nb

N �
1...N

�
b

≤ (
Rmax

Rmin

)N (N1...Nb) (17)

By considering the changes on the number of nodes in each
BS, we can show that N1 . . . Nb ≤ N(N−1) . . . (N−M+1).
The theorem is next proved by taking log

η
(.) from both sides

of the above inequality.
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Bounds on convergence time when policies are employed.
We now provide bounds on convergence time when weights
are generic and client based policies are employed.

Policy 1: Assume ζ · Λk�(t + 1) ≤ Λk(t) where ζ > 1 is
another threshold parameter. Then the bounds in Theorem 6
and Theorem 7 can be used. This can be achieved by replacing
η with ζ in the corresponding bounds.

Policy 2: Assume ζ · φi,k

Λk(t)
≤ φi,k�

Λk� (t+1) where ζ > 1
is another threshold parameter. Then we can show that
the proposed potential function is decreased by at least

B

Λk� (t+1)

φi,k� (B
(ζ−1)

Λk� (t+1)

φi,k� − N) at each selfish step. Set
B = (N + 1)Rmax/(ζ−1). Thus, the potential function is
decreased by at least B1/Rmax = (N + 1)1/(ζ−1) at each
step. On the other hand, the potential function is bounded
by N · B

Λmax
φmin , where Λmax = maxk

�
i

φi,k

Ri,k
. From these,

we observe that the umber of steps in bounded by N ·
B

N
φmax

φminRmin /B1/Rmax = N · (N + 1)(
φmax

φminRmin
−1)Rmax

ζ−1 .
Policy 3: The bound in policy 2 is also valid for policy 3.

VI. HYBRID CONTROL MODE

In this section, we consider a hybrid model that uses a
combination of client and network preferences to guarantee
convergence and arrive at a client-BS pairing. We assume a
network controller (NC) that has information about the set
of clients on each BS, their PHY rates, and their weight
parameters. We consider the throughput sharing model of
Eq. (1) with arbitrary client-BS weights (φi,k), and provide
several NC policies with guaranteed convergence and low
complexity convergence times.

When a client decides to change its BS, the target BS asks
the NC whether this migration is allowed or not. The client
then switches if NC allows the move. Moreover, in some cases
NC can force a client to leave a BS for a period of time
when its current association significantly reduces the overall
performance of the system.

In our hybrid model, the NC can use a potential function
to ensure that selfish BS selection by clients converges to
an equilibrium. When a client’s decision to switch is inline
with the NC’s potential function, then it is allowed to move.
Otherwise, the client has to choose another BS or remain in
its current BS. Hence, clients will keep trying to switch based
on their selfish strategy, until no client is interested/allowed to
switch its current BS. Note that in the hybrid model, we do
not need to define any restriction on weights, neither we need
extra client employed policies to guarantee convergence.

Similar to the client based switching threshold η, we can
define a switching threshold ∆ applied by the NC. This means
that the NC allows a client to switch its BS, only if its
movement can vary the potential function by at least ∆. We
can then easily drive an upper bound on the convergence time
of different NC policies by finding an upper bound for the
potential function and then dividing it by ∆. The value of
∆ must be chosen carefully. A small value will increase the
convergence time, while a large value can lead the game to
inefficient (low throughput) equilibria.

The efficiency of the hybrid model and its convergence
time properties mainly depends on the potential function. We
next present some example of potential functions, and provide
upper bounds on their convergence time.

1- Aggregate Throughput (AGG-TH): Aggregate network
throughput can be considered as an increasing potential func-
tion. This means a client i is allowed to move from BS k

to BS k� (at the same time the throughput of other clients
may increase on BS k and decrease on BS k�) if the potential
function is increased by at least ∆.

S(σ) =
�

i∈N

f(ωi,σi(t))

where f(.) is an increasing function. For example, if we set
f(.) to be identity function and ∆ = Rmin/N , the conver-
gence time will be O(NK

Rmax
Rmin

) (since S(σ) ≤ K ·Rmax).
2- Aggregate Weighted Rates: This model take into ac-

count the workload on each BS and can be designed to achieve
load balancing. The potential is:

S(σ) =
�

k∈K

f

�
�

i∈Nk(t)

φi,kRi,k

�

where f(.) is a concave increasing function. This potential
function grows when the throughput of clients increases and
the workload is evenly distributed among the BSs. For example
if β = −1, we set f(x) = log(x) (to achieve balanced number
of clients on each BS) and ∆ = 1/N . It is straightforward to
show that S(σ) ≤ M log(N/M) where M = min(K,N/e).
Thus, convergence time is O(NM log(N/M)).

3- Aggregate Inverse Throughput (INV-TH): The sum of
throughput inverse of the clients can be defined as a decreasing
potential function aimed at achieving harmonic fairness, i.e.

S(σ) =
�

i∈N

f(1/ωi,σi(t))

where f(.) is an increasing function. For example, if we set
f(.) to be identity function and ∆ = 1/(RmaxN), then
0 < S(σ) ≤ K/Rmin, and the convergence time will be
O(NK

Rmax
Rmin

).
4- Aggregate Weighted Inverse Rates: This model aims

at achieving harmonic fairness while balancing workload on
each BS. The potential is:

S(σ) =
�

k∈K

f

�
�

i∈Nk(t)

φi,k

Ri,k

�

where f(.) is an increasing convex function. The potential
function decreases when the throughput of clients increase and
the workload is evenly distributed among the BSs. For example
if β = 1, we set f(x) = x2 and ∆ = 1. Since 0 < S(σ) ≤ N2

the convergence time will be O(N2).

VII. PERFORMANCE EVALUATION

In this Section, we present the results of extensive simu-
lations to study the equilibria properties of network selection
games.
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Setup. We simulated a network composed of several wire-
less clients and BSs. The number of nodes ranges from 20 to
200. Nodes are randomly and uniformly distributed across an
area of 100 by 100 (m2). We placed a total number of 16 BSs
on the field with equal distance from each other. The clients
are assumed to be fixed and the PHY rate of each client is
calculated based on the distance to its associated BS. When
employing generic rates, unless otherwise specified, we select
the weight of each client on a BS randomly from an integer
set of {1, ..., 10}. For each setting we ran 200 trials each from
a different starting point, implemented different BS selection
mechanisms, and calculated the average value of the metric
under consideration.

Convergence Time. Figs. 2(a)-(c) show the convergence
time properties of different schemes. Fig. 2(a) shows the
average convergence time to equilibria when φi,k = R

β

i,k
. The

results show a small convergence time which is polynomial
with number of clients across various β values, confirming
that our proposed bounds are indeed very tight. Further, β = 0
and β = −1 have the maximum and minimum convergence
times, respectively.

Fig. 2(c) presents the average convergence time of equilibria
after imposing client based policies (Policy 1 to 3) and when
Network Control (NC) with aggregate throughput potential
is employed. Results show that policy 2 has the fastest
convergence time. This is because of the strong restriction that
this policy imposes on client switchings. Recall that under
this policy, a switching client must achieve the minimum
throughput on the destination BS. On the other hand, the
convergence time of other policies has a similar growth rate
to the NC with aggregate throughput. We observed same
convergence time behavior for NC with aggregate inverse
throughput potential.

Throughput Efficiency. Next, we study the throughput
efficiency of different schemes by calculating the average ag-
gregate throughput of clients at equilibria. Fig. 2(d) compares
the average aggregate throughput of clients at equilibria with
client and NC policies. Results show that NC with aggregate
throughput potential (NC (AGG-TH)) achieves the highest
average throughput at equilibria. Similarly, NC with aggre-
gate inverse throughput potential (NC (INV-TH)) outperforms
client policies as shown in Fig. 2(e). The results in Figs. 2(d)
and 2(e) show that applying minimal supervision through NC,
can substantially benefit network’s objective.

In Fig. 2(f) we show how far the set of clients’ throughput
at equilibria is spread out by calculating the variance in
different schemes. As the number of clients increases, the
variance sharply decreases and their throughput values get
closer to each other. Further, with small number of clients
NC has higher throughput variance than other policies since
NC encourages clients to move in order to achieve a higher
aggregate throughput.

Equilibria Disparity. In order to characterize the quality
of equilibria, we introduce a performance metric denoted by
γ. This metric gives the ratio of aggregate throughput of the
best equilibrium (in terms of aggregate throughput) over the

worst equilibrium. The value of γ aims to provide an insight
into the dispersion of average aggregate throughput across
all equilibria. The simulation seeks all existing equilibria
across the strategy space of a game by enumeration and
finds the profiles with the maximum and minimum aggregate
throughput to calculate the γ factor. Due to the exponential
growth of strategy profiles for increasing number of clients,
in this setting we only consider 9 clients and 4 BSs.

Fig. 2(g) shows the γ ratio on the right side of the plot while
the average aggregate throughput is presented on the left side.
The results show that increasing β, on average increases the
aggregate throughput, while it decreases γ. This is because
with increasing β the clients that have the highest PHY rates
get more priority compared to other clients. As a result, the
aggregate system throughput increases. Moreover, there would
be very few equilibria with close aggregate throughput values,
reducing γ. However, all these benefits come at the cost of
fairness between the clients. This is because low rate clients
get lower and lower priority and hence achieve a very small
throughput with increasing β.

The results also show that policy employed techniques
have lower γ or more balanced equilibria compared to β-
based throughput models. Further, these schemes achieve a
more predictable aggregate throughput. Combined with the
fact that these schemes guarantee convergence for generic
weights and can be designed to help network objective (e.g.,
with NC), these policies represent an attractive solution for
implementation in practical systems.

Impact of ∆ on Network Controller (NC). Recall from
Section VI that ∆ is a threshold employed by the NC which
allows a client to switch only if its movement can vary the
NC potential by at least ∆. We evaluate the impact of ∆
on NC performance by performing simulations on a network
consisting of 100 clients and 9 BSs. The bar chart in Fig.
2(h) shows how increasing the value of ∆ will affect the
convergence time (left bars) and aggregate throughput (right
bars). We observe that both of these two metrics decrease
with an increasing value of ∆. The greater value of ∆
puts more restrictions on the migration of clients and thus
decreases the network convergence time. Similarly, the average
aggregate throughout decreases since clients can frequently
be trapped in equilibria with low aggregate throughput and
cannot move due to high value of ∆. Therefore, NC can select
an appropriate ∆ for a given network deployment to balance
between convergence time and the efficiency of equilibria
(with respect to NC potential/objective).

VIII. CONCLUSIONS

We studied the dynamics of network selection games with
priority-based service considering two models in our analysis:
(i) a pure client-centric model, and (ii) a hybrid client-network
control model. We provided conditions and mechanisms under
which convergence to equilibria can be guaranteed. We also
provided tight bounds on the convergence time properties of
these games. Finally, we showed that applying a minimal
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a) b) c) d)

e) f) g) h)
Fig. 2. Average convergence time to Nash equilibria in β-related throughput models (a),(b) and with client/NC based policies (c); Average aggregate
throughput of clients at equilibria with client/NC based policies (d); Average aggregate inverse throughput with client/NC based policies (e); Aggregate
throughput variance for client/NC based policies (f); Average aggregate throughput and γ across all schemes (g); Convergence time and average aggregate
throughput vs. ∆ for NC with aggregate throughput potential (h).

amount of network control can help clients converge to equi-
libria in a predictable manner.
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