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Abstract—We present the design and implementation of ADAM,
the first adaptive beamforming-based multicast system and ex-
perimental framework for indoor wireless environments. ADAM
addresses the joint problem of adaptive beamformer design
at the PHY layer and client scheduling at the MAC layer by
proposing efficient algorithms that are amenable to practical
implementation. ADAM is implemented on a field programmable
gate array (FPGA) platform, and its performance is compared
against that of omnidirectional and switched beamforming based
multicast. Our experimental results reveal that: 1) switched
multicast beamforming has limited gains in indoor multipath
environments, whose deficiencies can be effectively overcome by
ADAM to yield an average gain of threefold; 2) the higher the
dynamic range of the discrete transmission rates employed by the
MAC hardware, the higher the gains in ADAM’s performance,
yielding up to ninefold improvement over omni with the 802.11
rate table; and 3) finally, ADAM’s performance is susceptible to
channel variations due to user mobility and infrequent channel
information feedback. However, we show that training ADAM’s
signal-to-noise ratio (SNR)-rate mapping to incorporate feedback
rate and coherence time significantly increases its robustness to
channel dynamics.

Index Terms—Adaptive beamforming, channel dynamics,
channel feedback rate, scheduling, switched beamforming,
wWireless multicast.

I. INTRODUCTION

HE PROLIFERATION of mobile computing devices

as well the rapid growth in applications and services
involving group communication (network management and
software updates, electronic class/conference rooms, MobiTV,
etc.) has made wireless multicasting an important component in
the next generation of wireless standards such as 802.11ac [1],
LTE [2], and WIMAX [3].

While the inherent broadcast nature of the wireless medium
allows for a single multicast transmission to cover a group
of users simultaneously, its performance is determined by the
client with the weakest channel [signal-to-noise ratio (SNR)].

Manuscript received April 23, 2012; revised November 08, 2012; accepted
November 08, 2012; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor A. Capone. Date of publication January 22, 2013; date of current version
October 11, 2013.

E. Aryafar is with the Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA (e-mail: earyafar@princeton.edu).

M. A. Khojastepour, K. Sundaresan, and S. Rangarajan are with NEC
Labs America, Princeton, NJ 08540 USA (e-mail: amir@nec-labs.com;
karthiks@nec-labs.com; sampath@nec-labs.com).

E. Knightly is with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005 USA (e-mail: knightly@rice.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2012.2228501

On a parallel front, beamforming antennas have recently gained
a lot of attention in indoor wireless networks [4]-[6]. These
are multiple-element antenna arrays that are able to focus their
signal energy in specific directions and hence form a natural
solution to improve the channel to the weakest client and
hence the multicast system performance. Beamforming could
be either adaptive, where the beam patterns are computed on
the fly based on channel feedback from clients, or switched,
where precomputed beams that cover the entire azimuth of
360° are used. Recent works [7]-[9] have advocated the use
of switched beamforming to improve multicasting. However,
the beamforming gain (from restricted signal footprint) comes
at the cost of reduced broadcast advantage, thereby requiring
multiple beamformed transmissions to cover all the clients un-
like an omnidirectional transmission. Addressing this tradeoff
in turn requires the use of composite beams that are generated
by combining individual beams so as to effectively balance
between beamforming gain and coverage [7].

In this paper, we experimentally show that switched beam-
forming has limited gains for multicasting in indoor multipath
environments. The reasons are twofold: 1) using a predeter-
mined set of beam patterns limits performance when simulta-
neously catering to a multitude of clients; 2) since the resulting
SNR on a composite beam is not available a priori, it is mod-
eled based on the measured SNR from its constituent beams.
However, such modeling is highly inaccurate in multipath en-
vironments, resulting in inefficient performance when a com-
posite beam is actually applied. To address these deficiencies,
we advocate the use of adaptive beamforming for multicasting
in indoor wireless networks.

Translating the potential of adaptive beamforming into practi-
cally realizable benefits for multicasting is a highly challenging
task. Specifically: 1) given the channel information of clients,
an optimal solution needs to identify if'and sow a set of clients
must be partitioned into separate groups (scheduling) and how
to design an adaptive beamformer that simultaneously caters
to all clients within the same group; 2) if such a solution can
be realized and implemented in practice to overcome the defi-
ciencies of switched beamforming and provide gains in indoor
multipath environments, and what are the factors affecting its
performance; and 3) in practical scenarios, the rate of channel
feedback from a client may not be sufficient compared to the co-
herence time of its channel either due to limited feedback (for
reducing overhead) or small coherence times (due to client mo-
bility). In such cases, the solution must incorporate robust mech-
anisms to compensate for the lack of timely channel feedback
not only to retain its benefits, but also to avoid degrading to
worse than omni.
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Toward addressing these challenges, we present ADAM—the
first adaptive beamforming-based system for multicasting in
indoor wireless networks. ADAM decouples the joint client
scheduling and beamformer design problem into two individual
subproblems in a manner that allows their solutions to reinforce
each other while also making them amenable to practical
implementation. It first partitions the set of clients into groups
based on the “closeness” of their channels. This allows it to
later determine an efficient adaptive beamformer for clients
within the same group, wherein a greedy, one-shot algorithm
yielding near-optimal performance is employed.

ADAM is implemented on the WARP platform, and its
performance is extensively evaluated in indoor environments.
Our experimental results reveal that: 1) while switched beam-
forming provides limited gains for multicasting in indoor
multipath environments, ADAM is able to address these defi-
ciencies to yield a threefold average gain; 2) ADAM’s gains are
more with a higher dynamic range of the (discrete) transmission
rates employed by the MAC, yielding gains as high as ninefold
over omni with the 802.11 rate table.

Finally, with controlled experiments performed with a
channel emulator, we show that the performance of ADAM
is strongly dependent on both the coherence time (t.) of the
channel as well as the channel feedback timescale (¢¢) and
more specifically on the s-ratio, where s = f—f Hence, ADAM
categorizes the clients based on their s parameter and employs
client-specific rate tables in determining the beamformed trans-
mission rate, thereby increasing its robustness to both client
mobility and limited channel feedback.

The rest of this paper is organized as follows. Section II pro-
vides a background on beamforming along with related work.
Sections III and IV describe the motivation and challenges of
adaptive beamforming for multicasting. Section V describes the
components of ADAM. Section VI describes its implementation
followed by detailed evaluation in Sections VII and VIII. Dis-
cussion and future work is presented in Section IX. Finally, we
conclude the paper in Section X.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

Beamforming: Beamforming antennas consist of an array of
omnidirectional elements, with sophisticated signal processing
capabilities. The signals that are fed to each of these elements
can be weighted in both amplitude and phase to produce a de-
sired beam pattern that increases the SNR at the receiver. These
weights are applied at the Tx antenna array and can be written
asw = [wowy ... wx_1]7. Depending on the level of sophis-
tication in adapting these weights, there are two main types of
beamforming: switched and adaptive.

In switched beamforming, a set of predetermined beam pat-
terns is available. A transmitter normally chooses a beam pattern
that provides the strongest signal strength at the client, without
requiring fine-grained channel information. Such a beam may
not coincide with the physical direction of the Rx depending on
the multipath scattering in the environment [10].

In adaptive beamforming, channel estimation from the Rx
is used to adapt the beam pattern in the signal domain at the
Tx. The resulting beam pattern is such that it is optimized to
reinforce the multipath components of the signals arriving at
the Rx from the different Tx antenna elements. Its versatility
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in indoor multipath environments comes at the cost of a fine-
grained channel estimation feedback.

Multicast and Beamforming: Given that multicast perfor-
mance of a group depends on the client with the weakest
channel in the group, beamforming provides a natural solution
to improve the SNR of the weakest client and hence the multi-
cast group as a whole. However, as previous works [7], [8] have
pointed out, the beamforming gain comes at the cost of spa-
tially restricted transmissions, which in turn limits its broadcast
advantage that is required to cater to multiple clients simulta-
neously. The solution to address the beamforming-coverage
tradeoff with switched beamforming is to form a composite
beam by combining multiple individual beams so as to cover
multiple clients simultaneously [7]. However, since the energy
is conserved, the net power is distributed among the con-
stituent beams of the composite beam, and hence the resulting
beamformed SNR at the clients is reduced. Hence, it becomes
important to intelligently choose composite beams that tradeoff
coverage and beamforming gain [7].

In adaptive beamforming, the channel to each of the clients
is estimated and fed back to the access point (AP). With the
complete channel information, the AP determines and applies a
beamformer that maximizes the minimum SNR among all the
clients.

B. Related Work

Omni Antennas and Multicast: Link-layer multicast solutions
with omnidirectional antennas have been proposed in [11] and
[12]. While these solutions are restricted to theory, recently [13]
proposed a practical multicast system for WiFi to alleviate its
known problems of low data rate and high loss. However, by
virtue of being designed for omnidirectional antennas, these so-
lutions cannot be directly applied for use with beamforming
antennas.

Beamforming and Multicast: Beamforming has received a
lot of attention recently in unicast [14]-[16] and multicast [7],
[8], [17]-[19] applications. For unicast applications, these
include both theoretical [20] and practical [14]-[16] systems
that leverage switched beam antennas. Practical unicast sys-
tems that leverage switched beam antennas were considered
in [14]-[16]. The joint problem of multicasting and (adaptive)
beamforming has received significant attention in the phys-
ical-layer community [17]-[19] from a theoretical perspective.
While these works target the continuous (power, rate) version
of the problem without addressing the scheduling aspect,
we consider both in this paper, which makes the problem
different. More importantly, we also build a practical system
that realizes the benefits of adaptive beamforming for multi-
cast. On the other hand, the joint problem of scheduling and
beamforming has been considered in theory with respect to
switched beamforming antennas [7], [8]. In addition to these
solutions being less effective in practical indoor environments
(shown experimentally later), the problem formulation and
hence solutions are significantly different when it comes to
adaptive beamforming.

MU-MIMO  Protocols:  Multiuser multiple-input-mul-
tiple-output (MU-MIMO) has been recently explored in [5] and
[21]-[23] for unicast. In unicast, the different streams cause
mutual interference to one another. On the contrary, in multi-
casting a common stream needs to be optimized for all of the
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Fig. 1. Adaptive versus switched beamforming performance comparison. (a) PDR. (b) Modeling accuracy in switched beam. Switched beam can achieve low
PDR due to SNR modeling inaccuracy in indoor multipath rich environments. (c) SNR gain. Adaptive beam can provide large SNR gains in indoor environments.

clients. Thus, MU-MIMO techniques for unicast do not apply
to the multicast problem, necessitating complete redesign of the
beamforming algorithms along with scheduling for multicast.

III. MOTIVATION

Current beamforming solutions for improving the multicast
performance (e.g., [7]-[9]) advocate the use of switched beam-
forming. Hence, in order to motivate the need for adaptive
beamforming, we address the following questions.

1) Is Switched Beamforming a Practical Solution for Im-
proving Multicast Performance? Given that the existing
switched beamforming solutions are mostly theoretical so-
lutions without a practical implementation, it remains to be
seen if switched beamforming can indeed deliver the promised
multicast gains in practice. We conduct an experiment in an
indoor environment (for detailed topological information,
please refer to Section VII) by considering three clients in a
multicast group. A circular array of four antennas with four
predetermined beams is used for switched beamforming. Based
on the beam with the best SNR reported by each client, the AP
determines a composite beam pattern to cater to all the three
clients simultaneously [7]. However, the SNR at the clients for
composite beams cannot be known a priori. Hence, the inherent
modeling assumption made is that when a composite beam is
formed from % individual beam patterns, the resulting SNR at
the clients are reduced by 10log;,(k) dB (compared to indi-
vidual beam SNR) due to the equal distribution of power across
the constituent beams. Thus, the AP selects a transmission rate
according to the predicted resulting SNR of the weakest client.

By varying our clients, we generate multiple topologies and
obtain the optimal switched beamforming solution, apply it, and
measure the resulting packet delivery ratio (PDR). The PDR
should be close to 100% if the modeling assumption is accurate.
However, the results in Fig. 1(a) are quite the contrary, where
the PDR is less than 50% in 30% of the topologies, thereby in-
dicating that the switched beamforming solution applied is not
an efficient one. In verifying the reason behind the poor perfor-
mance, we plot the predicted multicast group SNR of the com-
posite beams against the actual measured values in Fig. 1(b). It
is clear that the modeling assumption behind the predicted SNR,
which may hold in line-of-sight environments, does not hold in
many of our indoor topologies. Our results in Fig. 1(b) indicate
that in 60% of the topologies the modeling assumption have an
average error of 3.2 dB, where it either underestimates or over-
estimates the actual SNR. This, in turn, can be attributed to the
multipath nature of indoor environments, which makes it hard

to predict the effect of composite beams needed for multicas-
ting. Note that the selected packet transmission rate (modulation
and coding scheme) depends on the predicted SNR. However,
if the achieved SNR is even 1 dB less than the predicted one,
the corresponding PDR can drop significantly (for detailed dis-
cussion on the correspondence between PDR, transmission rate,
and SNR, please refer to Section VI-C). This is also verified in
the experimental results of Fig. 1(a).

2) Given That Switched Beamforming Cannot Address Mul-
ticasting Efficiently in Indoor Wireless Environments, the Next
Question to Understand Is Whether Adaptive Beamforming
(Designed to Handle Multipath) can Address the Deficiencies
of Switched Beamforming for Multicasting. Toward this end,
we estimate the channel to all the three clients and compute
an adaptive beamformer that maximizes the minimum SNR
for the multicast group (details deferred to Section V). The
resulting PDR for each of the topologies is compared against
switched beamforming in Fig. 1(a). It can be clearly seen that
adaptive beamforming is capable of delivering the predicted
performance in contrast to switched beamforming. Further-
more, the commulative fraction (CDF) of the SNR gain (in dB)
of adaptive over switched beamforming over all the topologies,
depicted in Fig. 1(c), clearly indicates the large potential of
adaptive beamforming for improving multicast performance.

IV. DESIGN CHALLENGES

In this section, we describe the system model and the chal-
lenges in realizing a practical adaptive beamforming multicast
system.

A. System Model

We consider a single-cell environment, where a smart antenna
AP is equipped with N antennas and transmits to K clients
each equipped with a single antenna. Once a multicast session
has been selected, our goal is to determine: 1) how to group
(schedule) the clients that belong to a multicast session, into
one or multiple transmissions; 2) how to calculate the adaptive
beamformer for each of the transmissions; and 3) the transmis-
sion rate for each of the groups.

We consider a narrowband system model, where the received
baseband signal y;, of the Ath user is given by

Yr = hpr + 2k, E=1,....K )
where x is the transmitted symbol from the base station an-
tennas, hy = [hixhok ... hyg] is the channel gain for the
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Fig. 2. (a) Impact of multicast group size on adaptive beam. As the size of the multicast group increases, gains of adaptive beamforming start to diminish. This
advocates the partitioning of a multicast group into smaller groups. (b) Channel magnitude variation. (c) Channel phase variation. (b), (c) Channel dynamics (phase
and amplitude) investigation for fixed and mobile clients. The large channel variations with mobile clients indicates the need for frequent channel feedback in such

scenarios.

kth user, and z; represents the circularly symmetric addi-
tive white Gaussian noise at the receiver. In this model, the
base-station transmitter is subject to a total power constraint
P,ie,x*x < P (x* is the conjugate transpose of x). The
total transmit power does not depend on the number of transmit
antennas and remains the same for all the schemes studied in
this paper. With beamforming, the transmitted signal x is given
by x = ws, where w is the beamformer vector and s is the
intended symbol. When beamforming is applied, the resulting
SNR at a client £ is equal to hyww*hj.

B. Determination of Adaptive Beamformers

Determining an adaptive beamformer that caters to all users
in the multicast group is a challenge in itself. To see this, con-
sider the objective of maximizing the minimum rate of the users
in the multicast group under constant transmit power constraint.
The rate of the kth user can be written as

Ry = logs(1 + hyww™hj) )

The multicast beamforming problem is then
MaXy m}jn{logﬂl +hyww*h;)}

st. w'w<P

Without loss of generality we assume ||s]|> = 1. Here, opti-
mizing the rate is equivalent to optimizing the minimum SNR
of the multicast group. Hence, the problem can be alternatively
presented as the maximization of the minimum received SNR
of all users, i.e.,

P maxy Inkin{w*hz,hk.w}

st. w'w<P

The problem formulation in P;, is a quadratically constrained
quadratic optimization program (QCQP), which is a nonconvex
problem, and its discrete version is NP-hard as well [18]. This
makes it challenging to design an efficient algorithm to compute
an adaptive multicast beamformer.

C. Scheduling

While the above challenge pertains to finding an adaptive
beamformer for a group of users, the next aspect to understand is
whether all users should be jointly beamformed to. We perform
an experiment, where we increase the number of users in the

multicast group from one to five in the topology of Fig. 5(a). The
adaptive beamformer is determined for each group, and the gain
of the resulting minimum SNR of the beamformed transmis-
sion over omnidirectional transmission is plotted in Fig. 2(a).
It can be seen that as the size of the group increases, the adap-
tive beamforming benefits tend to decrease with its performance
tending to that of an omni transmission. This is because as the
size of the group increases, the randomness of the channel vec-
tors of different users makes the beamformed vector tend to that
of an omnidirectional transmission so as to cater to all the users.
This, in turn, advocates the partitioning of users in a large mul-
ticast group into subgroups of smaller size and enabling beam-
forming to improve transmissions in each of the subgroups.
The need for such partitioning (scheduling) is exacerbated in
the presence of discrete rate tables. For example, consider two
users that each achieve a 5-dB SNR when jointly beamformed
to. With 802.11 rate table of (for detailed SNR-rate mapping of
802.11, please refer to Section VI), the transmission rate would
be 1 Mb/s. Now, if sequential serving of the users increases each
user’s SNR by 3 dB, the resulting data rate of each client would
be 9 Mb/s. Thus, if the transmission time of transmitting L bytes
with joint serving is %, the required time with sequential serving
would be £ + £ = L 'which is a gain of 450%.

Introducing scheduling complicates the beamforming
problem further. Note that when users are partitioned into
subgroups, there is a (time) multiplexing loss with different
subgroups receiving transmissions sequentially. Hence, there
is a tradeoff between operating on low rates (low min SNR) by
beamforming to all the users in one shot or operate on higher
rates in each subgroup but incur the multiplexing loss.

D. Channel Dynamics and Feedback Rate

The above two challenges are with respect to determination of
a solution under the assumption of instantaneous channel infor-
mation from clients. However, in any practical system, channel-
state feedback constitutes overhead and may not be available for
every single packet. The mobility of the clients further reduces
the coherence time of the channel, thereby requiring increased
feedback frequencies, the absence of which could render the
feedback both outdated and inaccurate.

We conduct an experiment, where the AP transmits
100 packets/s to a static client at night. The client estimates
the channel from the decoded preambles. The variation in the
channel magnitude and phase for the measured samples in an
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interval is plotted as a function of the interval size in Fig. 2.
The experiment is then repeated for a mobile client, and the
corresponding results are also indicated. It can be seen that
the channel dynamics are almost negligible for a static client,
indicating a large coherence time for the channel as well as its
ability to withstand reduced feedback frequencies. However,
with a mobile client, the situation is quite the contrary, where
the mean channel magnitude and phase variations are around
1 dB and 20°-30°, respectively. Note that the corresponding
large standard deviation especially in the channel phase (critical
for adaptive beamforming) indicates the small coherence time
of the channel, thereby requiring high feedback frequencies on
the order of few milliseconds.

Hence, it becomes important to understand the sensitivity of
the adaptive beamforming solution for multicast to such channel
dynamics as well as feedback frequency, and hence incorporate
robustness into its design.

V. DESIGN OF ADAM

In this section, we describe the design of ADAM, our
adaptive beamforming-based multicast system that addresses
the identified challenges. We first propose a joint user sched-
uling and beamformer design problem with the objective of
minimizing the time that it takes to disseminate data to the
multicast clients. Next, we propose efficient algorithms that
are implemented in ADAM and are suitable for a practical
system design. We address the impact of channel dynamics and
ADAM’s solutions to increase robustness in Section VIII.

A. Components of ADAM

Once the AP receives data to be disseminated for a multicast
session, ADAM operates as follows.

» Step 1: AP sequentially transmits training symbols on each

of its antennas.

+ Step 2: Each client measures the channel amplitude and

phase for each of the transmitting antennas.

o Step 3: Clients sequentially feedback channel information

to the AP.

o Step 4: AP runs its algorithms which partition the clients to

different groups and find the beamformer for each group.

o Step 5: AP selects the appropriate rate for each group based

on a rate table and transmits the multicast data.

The main algorithmic component of ADAM is to design ef-
ficient user partitioning and multicast beamformer for Step 4.
To evaluate this, we use the notion of schedule length (delay)
required for multicast data transfer to the entire group as our
metric of optimization. We assume a PDR requirement of 100%
for all of the clients. If some of the clients can tolerate a lower
PDR, it can be incorporated in our solution. Furthermore, it is
possible for an AP to send multiple multicast packets in each
schedule in order to reduce overhead. The periodicity of channel
estimation procedure can be determined based on its incurring
overhead, the required PDR for each client, and the dynamics of
channel due to user mobility or variations in the environment.

B. Problem Formulation

Assume K users in the system and a multicast data size of
L bytes. The objective is to partition the users into J groups
and transmit L bytes sequentially on each group, such that the
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total schedule length to deliver L bytes to all users is minimized.
The problem can be formally stated as

Lo
Py: min Z R(SNR,)
J=1 ’
st. wiw; <P
SNR; = min (hyw;wjihy)

where .J is the number of partitions, S; is the set of user in-
dices and w; is the beamforming vector for each partition j.
The rate function R(SNR) maps SNR into the appropriate rate,
and it may be a continuous (e.g., log based capacity) or a dis-
crete function. In practical systems, there are only a finite set of
modulation-coding schemes, which result in discrete rate func-
tions. Hence, the emphasis of our work is on discrete rates. .J,
S;, and w; are the outputs of the problem.

C. Algorithm Overview

As described in Section I'V-B, finding a multicast beamformer
is nonconvex, and its discrete version is also NP-Hard. Thus,
it is not feasible to find an optimal beamformer with general
channel vectors, even for a small-size single multicast group.
The problem formulation in P» is further complicated as the op-
timal grouping depends on the rate of each group, which itself
is dependent on the beamformer vector for that group and has a
discrete nature for practical purposes. To address these issues,
we adopt a decomposition approach that divides the problem
into two subproblems in a manner that allows the two subprob-
lems to reinforce each other. For a given number of groups,
we first partition the users into groups based on the “closeness”
of their channels. This allows us later to determine an efficient
adaptive beamformer for the clients within the same group. We
then employ a greedy, one-shot algorithm to provide a near-op-
timal multicast beamformer within each group.

By combining the above two subproblems, we have de-
veloped two algorithms to solve the joint partitioning and
beamformer (JPB) design problem of P». The algorithms are
as follows.

JPB-A (All): This algorithm considers up to K number
of partitions. Given the number of partitions (groups) 7, it
determines the client membership to the groups as well as
the beamformer for each group and calculates the resulting
schedule length. Finally, JPB-A selects the number of partition
7* along with the corresponding beamformers and client mem-
bership that yield the minimum schedule length among all.

JPB-S (Successive): This algorithm increases the number of
partitions one by one only if additional partitioning of the clients
decreases the schedule length.

The above two algorithms need to address two subproblems:
given a number of partitions, sow to assign the clients to the
given number of partitions; next, design an appropriate beam-
former for the clients within each group. These two components
are discussed next.

D. User Partitioning

In order to optimize the overall performance, the users that are
grouped together would be selected such that a beamformer that
is appropriate for one is also desirable for the rest of the users in
the group. This can significantly increase the minimum SNR of
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the group and the resulting transmission rate. We use the notion
of chordal distance [24] between two vectors as our metric for
closeness of user channels. Given two users with channels h;
and h;, the chordal distance between the channels is defined as

) |h;h > 3
" Py @

d.(h;,h;) =

The multicast beamformer can be efficiently designed for a

group of channels with low chordal distance between each other.

This is because of two reasons. First, a beamformer w that has

a low chordal distance from one channel in such a group would

have a low chordal distance from any other channel in the group
due to the following property of chordal distance

|dc(ll,j, W) — dc(hj, W)| S dc(h.,j, h]) (4)
Second, based on (3), minimizing d..(h;, w) is equivalent to
maximazing Wh h* w™* (SNR) where w, and h are the normal-
ized beamformlng Vector and normalized channel vector.
Hence, when we later design a beamformer for clients that
are grouped together based on their chordal distance, the beam-
former would efficiently increase the SNR across all the clients.

Algorithm 1: Multicast user partitioning GM-UP

1: Input:
2: Channel vectors hy,, 1 < & < K
3: Number of partitions n and number of iterations ¢}
4: Output:
5: A partitioning of K clients into n sets (S1,..., 5»)
6: Normalize the channel vectors hy = |h—‘ 1<k<K
7: Randomly assign clients to partitions s.t. |S,§O)| #0
8: Let M"Y = s L hihy
kest™

9: Find partition centroid: mgo)

10: fort = 1to @ do

= largest eigenvector MEO)

11:  Vj=1,...,n: Let S§ ={k: dc(hk,mgt—l)) <
do(hyg, m“ 7 Ne=1,... K.¥i=1,...,n,j#1i}
12 LeM® = S Z h*hk
| kes
13:  Find partition centroid: mgt) =largest eigenvector Mgt)
14: end for

15: S; = S? Vie {l,...n}

Algorithm 1 summarizes the procedure for grouping of users
into a given number of partitions. The algorithm is mainly com-
posed of two steps.

Step 1: (Line 11) Partitioning: During this, users are assigned
to partitions that have the least chordal distance from the cen-
troid or mean of the partition.

Step 2: (Line 13) Finding the centroid: The new mean of each
partition is calculated.

Algorithm 1 takes the number of iterations as an input and
converges to a partitioning in a small number of iterations.

E. Multicast Beamformer Design

The remaining component in algorithms JPB-A and JPB-S is
that for a given set of users that are grouped together, how to
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design a beamformer that maximizes the minimum SNR of the
users (problem 7P1). The solution to the optimization problem
in P; is equivalent (up to a scaling constant) to the solution to
the following problem:
P3: ming wW'w

s.t. 111’jnw*h2hkw >« Vk € [1,K].
This is because the optimal solution to P; will be given by the
product of ¢« and a scaling constant.

The Lagrangian and the necessary Karush—-Kuhn-Tucker
(KKT) conditions for the optimality of P35 can be written as

K

L(w,A) = w*w + > Mp(o — w*hihyw)
k=1
K
VwL(w,A) =2w - 2> Ahihw =0 (5)
k=1
Ar(e — w*hih,w) = 0 (6)

L Ax]and A, >0, VE € [1, K].

Based on the optimality conditions in (5) and (6), we make
the following two observations, which serve as the basis for our
beamformer design algorithm.

Observation 1: The multicast beamformer w is a linear com-
bination of hj s.

This can be inferred from (5). The reason is that (5) can be
written as

K K K
w=Y Mhibew =Y Ahiax =Y Ghi  (7)
k=1 k=1 k=1

where ar, = hyw and 3y = Apay are scalar values.

Observation 2: Given a permutation of the users, the optimal
solution can be represented as a function of the orthogonalized
channels of each user with respect to the channels of users pre-
ceding it in the permutation.

This can be inferred from (6). Suppose that M out of
K values of A; are nonzero and the rest are zero. Assume an
ordering w(k) of users where Ay # 0 for1 < k < M. For
a given permutation 7 and for all & from 1 to K, let h:,w( i) be
the vector obtained by successively orthogonalizing h;(k) to
all prior hﬂ( ) fori =1,...,k — 1. We can rewrite (7) as

w = Zﬁmkh;ﬂ(m. (8)

We note that by using the KKT condition and the assump-
tion that A,y # 0 for 1 < k < M, the constraint
o — w*h*( )hﬁ(k)w < 0 has to be satisfied with equality for
indices w(k),1 < k < M. By using (8) and orthogonal con-
struction of h k) W have the following forj =1,..., M:

K
o= (Z /3:—,191177777(]@)) h;(j)hw(j) (Z h;m(l)ﬂml>

k=1 =1

J J
- (Z /3;’kh,r,ﬂ(k)> hi i\ hagy (Z IL;J(Z)[)’WJ) 9)
k=1

=1
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The expression (9) has the following interpretation, which
can be used to build a greedy solution. When 7 = 1, we have

x = [i‘;lhﬂ,ﬂ(l)h;(l)hﬂ(l)h;,ﬂ(l)[iﬂ,l' (10)

In this case, J,1 can be found easily to satisfy the condition.
Next, for j = 2, we have

a = /H;Fr,1hﬂ',ﬂ'(l)h:—(z)hﬂ'@)h:,ﬂ-(l)ﬁw,l
+ Az o n@ b hr@ by 2 2)fr2

+ 2% { 32 b (Bl o) Br b ey Bz} - (1)

Now, 85 2 can be found to satisfy this condition given that /3 ;
from the previous step is used. We note that the successive or-
thogonality of h () with respect to k ensures that the condi-
tions that are met before still remain intact as we find the values
for the next 3, .. However, at each step, the value for 3. , that
satisfies condition (9) might not be unique, and hence it should
be chosen so as to minimize the norm of the multicasting beam-
former w at the final step. With the aim of minimizing the norm
of w, at each step we find the value of 3 ;. that minimizes the
partial norm of w, which in turn is defined as

2

k
1wl r =1 Bribh o) (12)
=1 )

Algorithm 2: Greedy algorithm for multicast beamformer
design GM-BF

Input:
Channel vectors hy,, 1 < £k < K
SNR threshold « > 0; Set of user permutations II
Output:
A permutation 7 of K users
A set of complex numbers 3 )
The beamforming vector w = Zi;l Br 1h
for all 7 € II do
for k. = 1to K do el g
10: ey = By = 201 iy T i Pre(®)
11: end for
12: ﬂﬂ-,l — \/a‘hﬂ.,ﬂ.(l)h;(lﬂfl
13: for j = 2to K do

PR2NRRNY

N4

14: A — |hﬂ.7r(1)h:_0)|2

150 B (150 80 4 hexe) 0Ly by E )

16: O Jheg) D42y b5 g B

17: if C' > « then

18: Br; =0

19: else

20: Bri = (1Bl + /B2 + Al — C))e 798,
where p(3) is the phase of I3.

21: end if

22:  end for

230wy =S8 Beshl

24: end for

25: w = arg ming_ ||wx||
26: © = argming |[wy|
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TABLE I
WARPLAB PHYSICAL-LAYER PARAMETERS

Frequency 24 GHz - Channel 14
Bandwidth 625 KHz
Payload size 100 bits
BPSK, QPSK

Modulation 16-QAM. 64 QAM

Generator polynomials: g0(133)
g1(171), Rate = 1/2, 2/3, 3/4
156 Kbps at 1/2 rate

Convolutional Codes

Base data rate

Algorithm 2 summarizes our proposed algorithm for multi-
cast beamformer design. The key steps of our greedy algorithm
are as follows.

Step 1: For a given permutation of users, orthogonalize the
user channels with respect to the channels of users preceding it
in the permutation (lines 9—11).

Step 2: With the help of the orthogonalized channels deter-
mined, each weight (3 . is obtained successively as a function
of the orthogonalized channels of users [1, k] such that they min-
imize the norm of w (lines 12-22).

Step 3: Steps 1 and 2 are repeated for every permutation 7
to obtain the corresponding beamforming vector w. The final
beamforming vector is obtained as the one that has the minimum
norm over all of the permutations (line 25).

The key advantage of the proposed algorithm is that there is
no need for an iterative approach as in prior works [17]; such
iterative approaches require fine adjustments to the solution pa-
rameters to obtain fast convergence and avoid divergence and
are not amenable to practical implementations.

Time Complexity Analysis: For a given permutation of users,
Algorithm 2 takes O(N x K?) time to compute a beamformer
(lines 9-23). Here, N is the number of antennas and is equal
to the size of the channel vectors. Therefore, by considering
all possible permutations, the total complexity of Algorithm 2
is O(N x K% x K!). This indicates that in case that a large
number of users are grouped together, considering all possible
permutation of the users can become intractable. In this case, we
can consider a small number of randomly selected permutations
such that the overall algorithm is computationally tractable.

VI. EXPERIMENTAL SETUP

In this section, we describe the implementation of ADAM as
well as switched beamforming solutions for multicasting.

A. Hardware and Software

Our implementation is based on the WARPLab frame-
work [25]. In this framework, all WARP boards are connected
to a host PC through an Ethernet switch. The host PC is re-
sponsible for baseband PHY signal processing, while WARP
boards act as RF front ends to send/receive packets over the air.
Table I specifies the PHY parameters used in our evaluation.
Our APs use four radio boards that are connected to 3-dBi
antennas and are mounted on a circular array structure with
a half-wavelength (%) distance between adjacent antennas
(6.25 cm at 2.4 GHz).

Our implementation uses a channel bandwidth of 652 kHz.
This channel bandwidth is smaller than the 20-MHz channel
bandwidth used in 802.11a/b/g. We emphasize that similar
experimental results would be obtained with a higher channel
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Fig. 3. Linear array antenna structure allows for construction of three orthogonal beams. Two of such beam patterns are depicted in (a) linear beam pattern 1 and
(b) linear beam pattern 2. The third beam is similar to (a), however, it points toward 0°. A composite beam constructed from linear beams pointing toward 0°
and 180° is shown in (c). Circular array structure allows for construction of four orthogonal beams pointing toward 0°, 90°, 180°, and —90°. The beam pointing

toward 180° is shown in (d) circular beam pattern 1.

width provided that either flat fading channel conditions exist or
more accurate channel information is available. For example,
with OFDM modulation-based standards (e.g., 802.11a/g)
where the channel is divided into many subcarriers, per-sub-
carrier (or a group of subcarrier) channel information provides
accurate channel information.

B. Multicasting Framework

We implemented three multicast mechanisms on our testbed.

Omni: This mechanism obtains periodic SNR feedbacks from
all of the clients in the multicast group. Next, it transmits mul-
ticast packets with the rate that is supported by the weakest
client. This mechanism always uses the first (fixed) antenna for
transmission.

Multicasting With Switched Beam Antennas: We have con-
sidered Linear and Circular arrays for switched beamforming.
In a linear array with antenna separation distance of 1156‘5 , three
orthogonal beams can be created [26]. Fig. 3(a), and (b) de-
picts two of these beam patterns. With appropriate shifting of
the phase across the antennas, a third beam can be generated
that is similar to Fig. 3(a), which however will point toward the
0° direction. Fig. 3(c) depicts a composite beam that is com-
posed of the two linear beams pointing toward the 0° and 180°
directions. In circular arrays, antenna elements are placed in a
circle with equal distance between each two neighbor antennas.
Fig. 3(d) depicts one of the resulting beam patterns for a sepa-
ration distance of % [26]. With appropriate shifting of the phase
across the antennas, the beam pattern of Fig. 3(d) can be rotated
to point toward the —90°, 0°, and 90° directions, thus, providing
four orthogonal beams.

We have implemented switched multicast beamforming
according to [7], whose solutions search over beam patterns
that are a superset of those considered in [8] and show con-
siderable gains compared to [8]. In this approach, the base
station transmits training symbols for each of its beams sequen-
tially. Next, the clients feedback the beam index on which the
strongest signal was received, together with the corresponding
SNR value. The base station then constructs a set of optimal
beams to cover all of the clients. However, when a composite
beam is used, the total power is equally distributed among its
constituent beams. In such cases, the algorithm predicts the
resulting SNR of the clients that are associated to a composite
beam and selects a rate that is supported by the client with the
lowest SNR.

ADAM: We have implemented the components of ADAM
based on our discussion in Section V.

C. System Implementation

We now describe the components of our implementation.

Channel Training: During the channel training, the trans-
mitter sends a known preamble. The preamble is composed of
a training sequence and a pilot tone. The training sequence is
used to achieve frequency and phase synchronization between
the transmitter and receiver. The pilot is used for actual channel
estimation. In omni, the preamble is sent over the fixed antenna.
For each of the beam patterns in switched beamforming, the
preamble is multiplied by the corresponding beam weight. The
weighted preambles are next transmitted sequentially. In adap-
tive beamforming, the base station transmits the preamble se-
quentially on each of its antennas. Thus, clients can correctly
measure the channel for each transmitting antenna.

Channel Estimation: During the channel estimation, each
client measures the h or SNR for each of the preambles and
sends it to the host PC. In omni, each of the clients measure
the preamble’s SNR and feeds back its value. In switched
beamforming, each beam pattern’s SNR is measured, and the
value of the highest SNR together with its beam index is fed
back. In adaptive beamforming, h is measured and fed back by
each of the clients. The feedback delay of our implemntation
is approximately 50 ms.

Modulation and Coding Scheme (MCS) Selection: All of the
studied protocols in this paper select an MCS according to the
resulting SNR. Thus, we need to quantify the SNR-rate rela-
tion for the WARP boards. We have used the Azimuth ACE 400
WB channel emulator [27] to find the WARP board’s rate table.
We connect one single-antenna transmitter and one single-an-
tenna receiver to the emulator and vary the SNR accross the full
range of allowable received power for the WARP radio board.
The channel profile parameters used by the channel emulator
are adapted from the 802.11n task group (TGn) models for a
small office environment. The channel profile is composed of
14 Rayleigh fading channels with multipath RMS delay spread
of 30 ns and maximum delay of 200 ns. Fig. 4(a) shows the
PDR as a function of received power for various MCSs. We se-
lect the rate of an SNR value as the highest MCS such that the
given SNR achieves 100% PDR.

Multicast Packet Transmission: In this step, the AP obtains
the appropriate channel information (SNR or h) by all of the
clients. It then sends the multicast packet with the parameters
according to the corresponding protocol.
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Fig. 4. (a) WARP board rate table and (b) 802.11 rate table as a function of
SNR.

D. Performance Metrics

All of our indoor experiments are conducted during the night
in an interference-free environment and with static nodes. Ex-
periments were conducted on the 802.11 2.4-GHz channel 14,
which consumer devices are not allowed to use in the US. As
observed in Fig. 2, the variations in channel amplitude and
phase in such conditions are such that the channel remains
coherent during the experiments. This allows for valid compar-
ison among multiple multicasting schemes that are studied in
this paper. Each data point in our indoor over-the-air experi-
ments is an average of 50 samples. Due to the coherent channel
conditions, the observed variation across each data point is less
than 5% of the averaged value. Hence, for ease of presentation
we only plot the average values. In our channel-emulator-based
experiments, we take 1000 SNR measurements for each data
point. We consider the received signal strength (dBm), schedule
length (delay), packet delivery ratio (PDR), and throughput as
our metrics for comparison of different schemes studied in this
paper. We define PDR and throughput for a client based on
the number of packets that are received correctly by that client
over all the transmitted packets. Next, we define the multicast
PDR and the multicast throughput as the average of PDRs and
throughputs over all of the clients.

VII. GAINS OF ADAPTIVE BEAMFORMING

In this section, we compare the performance of ADAM to
omni and switched beamform multicasting. We also evaluate
the algorithmic components of ADAM.

Scenario: Fig. 5(a) depicts our experimental setup in which
we deployed six nodes in an office environment. Nodes 1 and
2 each have four antennas and can thus be used as transmit-
ters or single-antenna receivers. We first consider node one as
our transmitter, and among the remaining five nodes, consider
all subsets of two, three, four, and five nodes as our different
client sets for generating different topologies. We repeat the ex-
periment with node 2 as our transmitter, leading to a total of
52 topologies. For each of these topologies, we measure the
schedule length for the multicasting systems considered in this

paper.

A. Impact of Discrete Rates

Performance Gains: Fig. 5(b) shows the schedule length
of ADAM when the rate is selected according to the WARP
SNR-rate relation of Fig. 4(a). Topology indices 1-10, 21-30,
41-45, and 51 are respectively 2, 3, 4, and 5 client topologies
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with node 1 as the transmitter. Topology indices 11-20, 3140,
46-50, and 52 correspond to node 2 as the transmitter.

Fig. 5(b) shows that for some of the topologies with node 1 as
the transmitter, ADAM provides negligible gains compared to
omni. For these topologies, the minimum rate that is supported
by omni is high. Thus, the increase in SNR due to adaptive
beamforming does not provide high throughput gains. However,
in topologies where at least one client has a weak channel, the
gains of adaptive beamforming are much higher. In such topolo-
gies, omni would choose the lowest rate such that all clients can
successfully receive the packet. A similar increase in the SNR
would then result in high gains due to the nonlinear mapping
of SNR-rate of WARP boards. On average, in this experiment,
ADAM reduces the schedule length by a factor of 2.8 compared
to omni.

Suboptimality of Partitioning.: Fig. 5(b) also compares the
performance of ADAM’s user partitioning (JPB-A) to the op-
timal partition. We find the optimal partition of a given topology
by considering all possible partitions of its corresponding client
set and selecting the one with the minimum schedule length. Ac-
cording to Fig. 5(b), JPB-A has a performance that is very close
to that of the optimal partition. On average, JPB-A increases
the schedule length only by 7% compared to that of the optimal
partition.

Dynamic Range of Rate Tables: ADAM’s user partitioning
and beamformer selection components (Algorithms 1 and 2)
depend only on the client channel vectors and are not affected
by the specific SNR-rate mapping of the hardware. However,
the joint partitioning and beamfomer selection algorithms
(JPB-A and JPB-S) select the partition that results in the
minimum schedule length by taking into account the specific
SNR-rate mapping of the implementation. Hence, we now ex-
plore ADAM’s performance when we select the rates according
to 802.11°s rate table. The SNR-rate mapping of 802.11a is
shown in Fig. 4(b). Fig. 5(c) depicts the schedule length of
ADAM as well as omni. In order to measure the schedule
length, we measure the beamformed multicast packet’s SNR
at the corresponding clients. Next, we map the measured SNR
to the 802.11 rate table of Fig. 4(b) and calculate the resulting
schedule length for each of the schemes.

Fig. 5(c) shows that ADAM has significantly reduced the
schedule length with an average reduction factor of 9. 802.11a
uses OFDM modulation with rates of 6-54 Mb/s. It also sup-
ports basic rates of 1 and 2 Mb/s with DSSS modulation. Thus,
ADAM has the potential to provide gains as high as 54. This, in
turn, results in additional decrease in schedule length as com-
pared to WARP board’s SNR-rate table.

Finding: ADAM with four antennas can reduce the schedule
length by about 2.8 times compared to omni. As the SNR of
the weakest client increases, ADAM’s gain decreases. ADAM’s
gains are also highly dependent on the SNR-rate table used by
the specific hardware and can significantly increase when the
dynamic range of a rate table is high.

B. Impact of the Number of Antennas

Fig. 5(d) shows the measured schedule length of ADAM
as a function of the number of antennas and the number of
clients across all the topologies. Fig. 5(d) shows that with two
antennas at the transmitter and with five clients, ADAM slightly
decreases the schedule length compared to an omnidirectional
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Fig.5. ADAM’s performance evaluation in an indoor environment. (a) Map of the environment. (b) Schedule length with WARP. ADAM provides an average gain
of 2.8 compared to omni with WARP board’s rate table. Furthermore, ADAM’s greedy user partitioning achieves a performance close to the optimal partitioning.
(c) Gains with 802.11 rates. When the dynamic range of the rate table is high, ADAM can provide even higher gains. (d) Gains with varying number of antennas.
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Fig. 6. (a) Algorithm comparison. JPB-S can be trapped in a local minimum,
whereas JPB-A considers all possible user partitions and thus has a better per-
formance. (b) Optimal partition size for different transmit powers.

transmission as depicted in Fig. 5(b). This is because as the size
of the clients with respect to the number of antennas increases,
the randomness of the channel vectors of different clients
coupled with the high number of users makes the beamformer
vector to tend to that of an omnidirectional transmission. On
the other hand, Fig. 5(d) shows that increasing the number of
antennas for a fixed number of clients can significantly reduce
the schedule length.

C. Algorithm Evaluation

We now evaluate the algorithmic components of ADAM.
We start by comparing the performance of JPB-A and JPB-S.
JPB-A considers all possible number of partitions ([1 to K']) for
K clients, whereas JPB-S successively increases the number of
partitions (details discussed in Section V-C).

Performance Versus Complexity: Fig. 6(a) depicts the CDF
of the ratio between the schedule length of the optimal user
partitioning to that of the proposed partitioning algorithms. We
observe that JPB-A achieves a schedule length that is close
to that of optimal user partitioning. However, the performance
of JPB-S could be significantly lower than JPB-A. Our results
show that JPB-S can converge to a local minimum, while JPB-A
considers a higher number of partitions and thus can achieve a
better performance.

In all our experiments we observed that the user partitioning
component of algorithms JPB-A and JPB-S partitions the users
into any given number of groups in less than 20 iterations.
However, as discussed in Section V-C, selecting an appro-
priate beamformer for a given group of users is proportional

to the number of user permutations and has a factorial time
complexity. Thus, in order to reduce the time complexity with
a large number of users, one can consider a small number of
randomly selected permutations such that the overall algorithm
is computationally tractable.

Optimal Partition Size: Fig. 6(b) shows the CDF of the
optimal partition sizes for three different transmission powers.
For high transmission powers (Tx Power = 12 dBm), up to
85% of topologies do not require partitioning. As we reduce
the Tx power, the need for partitioning increases. Fig. 6(b)
shows that with 10 dB reduction in transmission power
(Tx Power = 2 dBm), only 10% of the topologies would not
require partitioning, while 70% would require at least two par-
titions. The need for partitioning with low power is due to two
reasons. First, with a low Tx power, it may not be feasible to
serve all of the clients in the same group. Second, with low Tx
power, a higher number of clients would have low-quality links.
Due to the discrete nature of SNR-rate mapping and the fact
that SNR increase in lower rates results in higher throughput
gains, beamforming to a smaller group size provides a higher
gain compared to serving all users together.

Finding: In general, the optimal partition size of K clients
should be exhaustively found by considering up to K partitions.
However, our experimental results show that the typical number
of optimal partitions is low. Thus, in order to reduce the com-
putational complexity, we can limit the number of partitions to
a small constant, independent of K.

D. Adaptive Versus Switched Beamforming

In this section, we compare the performance of ADAM to
that of switched beamforming. We have used the same exper-
imental setup of Fig. 5(a). For each topology, we first perform
adaptive beamforming. Next, without changing the antenna
array, we perform switched multicast beamforming by using
the predetermined beams for the circular array. Finally, we
change the antenna array to a linear array and perform switched
multicast beamforming with its corresponding beam weights.
While changing the antenna array, we keep the first antenna
at its former location. Since the performance of omni is only
dependent on the first antenna, its schedule length remains
similar to that of Fig. 5(b).

Relative Gains: We now compare the schedule length of
switched beamforming to that of adaptive beamforming.
Fig. 7(a) shows that ADAM provides an average gain of 1.8
and 2.1 over switched beamforming with circular and linear
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Fig. 7. Comparison between ADAM and switched beam in indoor environments. (a) Predicted schedule length of switched-beam. Unlike switched beam, ADAM
benefits from the multipath and thus provides significant gains in terms of schedule length. (b) PDR. Furthermore, composite beam SNR prediction inaccuracy
that is used in switched beamforming, results in low PDR in many scenarios. (c) Impact of beam combining. The composite beam’s real SNR can be significantly

lower/higher from the predicted SNR in indoor environments.

arrays, respectively. Furthermore, ADAM consistently outper-
forms switched beamforming in every topology. This can be
attributed to the fact that switched beam uses only a finite set
of predetermined beams, which might even have a lower gain
compared to an omni transmission in the presence of multipath.
Indeed, by comparing Figs. 5(b) and 7(a), we observe that in
many scenarios switched beamforming would not be used and
instead the switched beam algorithm would end up using omni
transmission.

Drawback of Switched Beamforming: Fig. 7(b) shows the
drawback of switched beamforming when employing com-
posite beams. The resulting PDR of switched beamforming
could be a lot lower than the predicted 100% and could be equal
to zero for many topologies. This is due to the composite beam
construction of switched beamforming. For example, when two
beams are combined and the power allocated to each beam is
divided in half (so that total power is conserved), the inherent
assumption is that the resulting SNR in each beam reduces by
3 dB and an MCS is selected accordingly.

We have performed an experiment to show the inaccuracy of
such a modeling assumption in indoor multipath environments.
For each of the clients in the topology of Fig. 5(a), we find the
beam that achieves the highest SNR for both linear and circular
array structures. Next, for each client, we construct a two-lobe
composite beam by combining its best beam, with every other
beam of that particular antenna array. Finally, we measure the
resulting SNR of the constructed composite beam and subtract
it from the SNR obtained by using the best beam alone. Fig. 7(c)
shows that when combining two beams, the resulting SNR could
be significantly higher or lower than the predicted SNR. This is
because, even when the constituent beams are orthogonal, when
a composite beam is used in an indoor multipath environment,
the resulting energy at each client not only depends on its chosen
constituent beam, but also on other beams due to reflections and
multipath scattering. Depending on whether the resulting effect
is constructive or destructive, the resulting SNR could be higher
or lower, making it hard to leverage composite beams in indoor
multipath environments.

Overhead Comparison: In switched beamforming, the index
of the best beam and the resulting SNR is fed back by each
client. This results in 2-bit overhead for beam selection and
6-bit overhead for SNR (out of 64 levels), resulting in 8-bit total
overhead.

In our current implementation of ADAM, 8 bits are fed back
for each antenna, resulting in a total of 32 bits overhead per
client. Note that our implementation does not use any code-
book for channel estimation, which can be used for significant
overhead reduction. Recent implementations of adaptive beam-
forming [28] have shown that a codebook size of 64 (and hence
6 bits) provides similar performance to infinite codebook for a
four-antenna transmitter. Note that for both schemes, the overall
impact of feedback is small compared to a multicast packet size.
Also, as a channel estimate can be used for multiple packet
transmissions, the impact of overhead can be further reduced.

Finding: Switched beamforming has limited performance for
multicasting in indoor multipath environments, while ADAM
benefits from indoor multipath by choosing appropriate weights
that reinforce the multipath components at the receiver.

VIII. IMPACT OF CHANNEL DYNAMICS

The experiments so far were conducted with perfect channel
information at the transmitter. However, in any practical system,
the rate of channel feedback that is available from a client may
not be sufficient compared to the coherence time of its channel.
The channel feedback timescale could be inherently limited in
the system for overhead reduction, and/or the channel coher-
ence time could be small due to high variations in the environ-
ment or client mobility. This would cause inaccurate channel in-
formation at the transmitter, which can significantly reduce the
gains of ADAM and may even degrade its performance to worse
than omni. In this section, we first explore the relation between
channel feedback rate and channel coherence time on the per-
formance of ADAM. Next, we propose solutions to compensate
for the lack of timely channel feedback, such that the benefits
of ADAM are retained.

Scenario: In order to have precise and repeatable channel
conditions, we use a channel emulator for the experiments
within this section. We use the same channel emulator configu-
ration setup of Section VI. However, our topology is composed
of a four-antenna transmitter and three single-antenna receivers.
The three receivers constitute a single multicast group to whom
the transmitter jointly beamforms.

A. Feedback Rate and Coherence Time

We now evaluate the gains of beamfoming in changing
channel conditions as a function of feedback rate. Specifically,



1606

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

E - E 3 ol
#120 ms #64 ms 16 ms =8 ms 120 ms #64 ms *16 ms =8 ms g?::? _66[; “gen:mllg
100 H\@\@ 13 F_*+OmniBasic-16
= | 700
2 7 ;'\'\-\. g g
e = £ 500
50 x 8 3
e 4 <
g 25 (7] ’\‘ ?300 \
= e 5
F] 0 3 £ 100 =
10 50 100 250 500 10 50 100 250 500 10 50 100 250 500
Time (msec) Time (msec) Time (msec)

(a)

(b) (c)

Fig. 8. Impact of coherence time and feedback rate on ADAM’s performance. As the rate of channel information feedback decreases, (a) multicast PDR, (b) av-

erage SNR, and (c) throughput decrease.

we vary the timescale of channel information feedback (#¢) that
is available at the transmitter. Once the transmitter obtains the
channel information, it jointly beamforms toward the clients
and transmits back-to-back multicast packets until the next
channel information feedback is available. We repeat this
experiment for four coherence time (£.) values of 120, 64,
16, and 8 ms. The 120- and 64-ms {. values are associated
with a fixed wireless endpoint in slowly and highly varying
environments, respectively. The 16- and 8-ms ¢. values are
associated with a typical pedestrian client in slowly and highly
varying environments.

Coupling Between ty andt.: Fig. 8(a) shows the average PDR
as a function of channel feedback timescale for different coher-
ence times. We observe that the PDR of multicast beamforming
drops as the timescale of channel feedback increases for a given
coherence time, or as the coherence time decreases for a fixed
feedback timescale. This drop in PDR is significant for smaller
coherence times (16 and 8 ms) associated with user mobility.
We also observe that for 8 ms coherence time, the timescale of
10 ms for channel feedback results in approximately 8% drop
in PDR, whereas 100% PDR is achieved for all of the other #..

To understand the reason for the drop in PDR, we evaluate
the variation in the received average SNR of clients in the
multicast group in Fig. 8(b) as a function of channel feedback
timescale. In these experiments, we measure the SNR value for
every packet over all of the clients and plot the average SNR
and its standard deviation. We observe that the average SNR
drops as the timescale of channel feedback (¢.) increases for a
given coherence time (#¢), or the coherence time decreases for
a fixed feedback rate, thereby corroborating the corresponding
trend observed in PDR. This also indicates the strong coupling
between Iy and ¢. (specifically the ratio of s = i—i) that keeps
track of channel dynamics and hence impacts the multicast
performance of a group.

Finding: Channel variations reduce the effective SNR of a
multicast group, which in turn depends on both #; and #., and
more specifically on s = i

Impact on Performance: We next compare the performance
of ADAM to omni. In omni, the transmitter selects a rate that
is supported by the weakest client. This rate is used for all of
the multicast packets until the next SNR feedback is available.
Omni with base rate uses the lowest MCS without any feedback
requirement from the clients. This approach is currently imple-
mented in 802.11 for multicasting.

Fig. 8(c) depicts the throughput results for 16- and 64-ms co-
herence times. While both ADAM and omni (denoted as omni

FB) are highly sensitive to accurate channel information, the
sensitivity is higher in ADAM as expected due to its stronger
dependence on channel information. What is interesting is that
even in the presence of increased channel dynamics, ADAM
continues to provide gains over 802.11 with feedback as well
as omni transmission with base rate. However, at extremely re-
duced feedback rate (ty = 500 ms) and small coherence time
(te = 16 ms), i.e., large s values, both the schemes degrade to
perform even worse than omni with base rate.

Finding: In order to realize the benefits of ADAM, channel
information must be obtained in relation to the clients’ coher-
ence times. Inaccurate channel information, characterized by
large s values, can significantly reduce the multicast throughput
to even lower than omni with base rate.

B. Reduced Feedback and Mobility

In any multicast system, the required PDR is dependent on the
application. As seen in Fig. 8(a), for a given PDR requirement,
clients with smaller coherence times require more frequent feed-
back. This could result in significant training and feedback over-
head especially with a high number of clients and/or transmit an-
tennas. Also, when clients in a multicast system have different
coherence times, a single client with a small coherence time is
sufficient to significantly increase the training overhead. This is
because the frequency at which the AP should transmit training
symbols on each of its antennas depends on the client with the
smallest coherence time. Thus, for any practical system, it is de-
sirable to reduce the feedback rate and hence the overhead.

Since we have no control over ¢.. of clients and would like to
keep ¢ fixed to a desired value to minimize the overhead, the
resulting infrequent feedback (for clients with small £.) reduces
the effective SNR of the multicast system as seen in Fig. 8(b).
Hence, to account for the reduced effective SNRs, we propose to
train ADAM’s operational SNRs based on both #; and £... Since
the inaccuracy in channel information is directly related to s =
z—f, training here refers to obtaining the SNR-rate profiles that
are specific to different s values. ADAM then categorizes clients
based on their s value and applies the appropriate s-rate table
for each client in determining the effective multicast rate. Thus,
accounting for ¢ and . of each client helps build robustness
into ADAM’s operation against infrequent feedback and client
mobility.

s-Valued Rate Tables: To train a rate table corresponding to
agiven s = i—i, we perform an experiment with channel em-
ulator with one sender and one receiver. For each SNR value,
the transmitter sends back-to-back packets to the receiver for a
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Fig. 9. (a) WARP SNR-rate for s = %. Training WARP boards according to
s = %, and (b) the resulting impact on throughput.

duration of #},.,, s, measures the PDR, and repeats this experi-
ment for a thousand trials. The emulator uses the same config-
uration parameters of Section VI. However, instead of using a
static channel (. = o0), its ¢, value is based on the s parameter.

Fig. 9(a) shows the achieved PDR as a function of the SNR
(dBm) for each of the WARP MCSs for an s = % (tr = 50,
t. = 8 ms). Comparing Fig. 4(a) to Fig. 9(a), we observe that the
required SNR for 100% PDR is now increased. In other words,
a higher average SNR is required to sustain a given MCS so as
to compensate for the infrequent feedback available to track the
channel dynamics.

Impact on Robustness: We now quantify the gains of training
ADAM based on s-rate tables. To achieve this, we use the same
experimental setup of Fig. 8. However, we obtain our rate table
according to Fig. 9(a) for s = %. Fig. 9(b) shows the perfor-
mance of ADAM both with and without training for coherence
times of 8 and 16 ms.

It can be seen that the gains of training are dependent on the
timescale of channel update. With a 10-ms update rate, the un-
trained system is capable of tracking channel dynamics to yield
high throughput. However, training becomes critical to sustain
high throughput when channel update rates are equal or higher
than #¢ for the corresponding s. Since a trained multicast system
selects a lower MCS to account for channel variations, its re-
sulting throughput compared to an untrained system would be
lower for feedback timescales smaller than ¢, and higher for
the timescales larger than ;. Note that apart from throughput,
PDR is another metric that should be considered in selecting be-
tween a trained versus untrained rate table. In the above experi-
ment, 100% PDR is achieved by the trained system for two data
points, whose (¢, t¢) is (8, 50) and (16, 100) ms, respectively.
However, their s value is the same (s = %), thereby indicating
the performance dependence on the s value as opposed to the
individual #; and ¢, values.

Finding: Training a rate table based on coherence time and
feedback rate allows ADAM to effectively accommodate clients
with varied (%) values. The client specific SNR-rate mapping
can be incorporated in the user scheduling optimization problem
to further reduce the overall schedule length, which is an inter-
esting avenue for future research.

IX. DISCUSSION AND FUTURE WORK

ADAM’s protocol design is similar to the IEEE 802.11ac
standard [1], in which a base station broadcasts a channel
probing message for clients to estimate and feedback the
channel information. As an alternative approach for channel
estimation, a base station can obtain channel information
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based on the preexisting uplink traffic (due to TDD channel
reciprocity). This can potentially help with reducing overhead,
provided that timely estimates of the channel information are
available.

ADAM’s design requires channel information feedback
from the clients in the multicast group. If some of these clients
do not support channel estimation and feedback capability,
ADAM similar to 802.11ac [1] should use a default fixed rate
for multicasting.

Our proposed solution for handling infrequent channel feed-
back (or high user mobility) assumes knowledge of the coher-
ence time of the corresponding clients. A client can estimate the
coherence time based on transmission of known waveform sig-
nals (e.g., pilots) by the base station and analysis of the variation
of the received signal samples over time [29], [30]. This infor-
mation can then be reported to the base station along with the
channel information. This approach improves the robustness of
the beamforming solution by requiring additional feedback bits
to denote the coherence time. Joint design of channel informa-
tion and coherence time estimation mechanisms or other solu-
tions to add robustness when employing adaptive beamforming
is a topic of our ongoing work.

X. CONCLUSION

In this paper, we presented the design and implementation
of ADAM, an adaptive beamfoming system for multicasting
in indoor wireless environments. We proposed efficient algo-
rithms to solve the joint scheduling and beamformer design
problem. We also implemented ADAM on the WARP platform
and, through extensive indoor measurements, showed signifi-
cant gains compared to switched beamforming and omni. We
also investigated the performance of ADAM as a function of
channel feedback rate and user mobility and proposed solutions
to increase its robustness to channel dynamics.
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