An Intelligent Satellite Multicast and Caching
Overlay for CDNs to Improve Performance in
Video Applications

Chris Brinton!, Ehsan Aryafarl, Steve Corda2, Stan Russo2, Ramiro Reinoso?, Mung Chiang1
!Princeton University, Department of Electrical Engineering, Princeton, NJ 08540
2SES, Princeton, NJ 08540

Abstract—Over the past decade, video has become the dom-
inant form of traffic consumed over content delivery networks
(CDNs). This trend, coupled with the ever-increasing subscriber
base, has caused an explosion of data demands in a wide variety
of scenarios. Such trends have resulted in heightened levels of
congestion within today’s terrestrial networks and are expected
to become more acute in the coming years.

To combat network congestion, we propose a satellite-based
overlay for existing terrestrial CDNs. Satellite networking has
distinct advantages over terrestrial networks in being able to
distribute delay-tolerant high bandwidth content across a wide
geographic area simultaneously, with few limitations to the
distance between requestor and source, nor the number of
locations being served. Additionally, our solution calls for cache
storage at local proxy servers one-hop from the end users, which
in most instances will improve the response time of current
network architectures. The proposed cache algorithm leverages
the homogeneous coverage area provided by satellite to allow
each proxy server to compare its local network view to the global
picture, learn the popularity distributions quickly, and make its
own caching decisions.

Through simulations of two CDN case studies - Cellular and
Video on Demand - we find that multicasting can provide sig-
nificant reductions in required network bandwidth as compared
to terrestrial-based unicast, for situations dominated by video
traffic. Further, by leveraging advantages offered by our caching
algorithm, we show that the multicast solution scales well, both
with increasing cache storage and coverage area. Qur solution
appears robust as relevant traffic parameters, such as heavy-tail
characteristics and global file popularity, are varied.

The work presented in this paper is the result of an ongoing
collaboration between Princeton University and SES. We believe
that our solution incorporates the technologies best suited for the
networking challenges being faced today and is forward looking
in its ability to scale with demand, content type and size, which
enables new market opportunities for the satellite industry.

I. INTRODUCTION

In recent years, networks have experienced an unprece-
dented growth in data demands. Indeed, global IP traffic has
increased eight-fold over the past five years, and is expected
to exceed 100 exabytes per month by 2016 [1]. As opposed
to standard web queries, a remarkable driver of this trend
has been multimedia data: It is estimated that video alone
comprises over half of all consumed Internet traffic today.

Not only is its demand on the rise, but the number of
services offered to access video is growing. For instance, with

the advent of the smartphones, there have been exorbitant in-
creases in the amount of data consumed on mobile devices. In
2012, mobile video data exceeded half of the total for the first
time [2], and by 2016, this fraction is anticipated to reach two-
thirds, at which time mobile requests will encapsulate 10%
of total IP traffic [1]. At the same time, cable TV providers
have expanded their services to include consumer managed IP
traffic, like IPTV and Video on Demand (VoD). VoD traffic, in
particular, currently generates roughly 6 exabytes per month,
and this number is expected to triple by 2016 [1].

These increases in demand are expected to cause heightened
congestion on terrestrial networks in coming years [3]. For
instance, cellular networks, despite employing state of the art
technologies like 4G-LTE, are encountering difficulties with
the onslaught of requests due to capacity issues in their legacy
backhaul links [4], [5]. A significant portion of backhaul
networks in the US still employ copper T1/El technology
to connect cell sites to the core network [6], and these links
will have exceeding difficulty supporting demand aggregation
among towers.

Network operators typically turn to fiber technology to man-
age capacity issues. But fiber installation is quite expensive
even in developed countries, and can cost up to millions
per mile [4]. Another common practice has been for these
operators to license content delivery networks (CDNs), since
CDNs can load-balance demand by splitting capacity among
geographically distributed surrogate (proxy) servers [7]. In
such schemes, a request from a subscriber is forwarded to one
of these proxys through a redirect mechanism in an attempt
to keep the query from traversing far into the network. The
success of CDNs depends on their ability to store popular
content close to the users, both to reduce network congestion
and enhance QoS through reduced latency [8].

With terrestrial CDNSs, the inherent unicast architecture of
the Internet has coupled well with small file sizes requested on
demand from individual users. But the proliferation of video
brings about a new class of highly asymmetric traffic in which
each request is more significant. Supporting multiple point-
to-point sessions for this content will become challenging as
the number of users and the size of the files increase, due
to increasing bandwidth strains. This is especially true in
situations where networks are bottlenecked by legacy copper
or lower-end fiber.

Needed is a network architecture that is scalable with
the increasing demands for video traffic. Currently, we are
investigating a practical solution to this issue. The purpose of
this paper is to describe our proposal, and evaluate its efficacy
under realistic traffic conditions.

One of the benefits of video traffic is that its request trends
tend to follow a “heavy-tailed” distribution, in which a large
fraction of requests occur for a relatively small fraction of the
content. Such trends have been noticed in networks ranging
from cellular [9], to user generated content [10], to IPTV [11]
and VoD [12]. This implies that some videos are popular and
requested with high frequency by different end users. For this
reason, multicasting is a desirable feature to augment current
CDNs, so that many of these requests for the same content
can be served simultaneously.

IP/application layer multicasting is inherently difficult to
accomplish over terrestrial fiber-based CDNs, for both techno-
logical and cost reasons. On the other hand, satellite is the ideal
technology for multicasting, given the efficiency it champions
with point-to-multipoint communication. This makes it an
ideal multicast source for delay-tolerant, bandwidth intensive
CDN traffic [13]. Video is no exception to this, because of the
significant amount of pre-coded videos and movies that may
be upwards of a few GB in size, especially for HD files [9],
[14].

Part of our proposal is to use satellite for multicasting,
to leverage its scalability with increasing demand. We will
investigate such scalability properties in Section IV. But not
all videos are pre-coded, and not all content is multimedia.
As a result, we advocate a satellite-based overlay for existing
terrestrial CDNs, as shown in Figure 1. This architecture com-
bines the benefits of each technology. While fiber can handle
individual requests instantaneously, satellite is better equipped
to serve multiple, delay-insensitive requests simultaneously.

Since satellite networks are generally the more cost effective
medium when there are multiple requests for the same content,
it is important to have reasonable estimates on the number of
identical requests that can be expected in a given time frame.
Also note that the more frequent the requests for the same
video, the less the delay each user will experience, beacuse the
multicast group for that file will fill up sooner. We advocate
a technique that compliments multicasting — the placement of
cache storage in terrestrial networks — to minimize the number
of re-transmissions for content that is frequently requested.
Further, if the storage is kept close to the end users, it will
enhance QoS through reduced latency.

Caching is practical for video distribution because requests
exhibit a heavy-tail relationship, as stated. In order to operate
the cache efficiently, it is necessary to store the files that
are most likely to be requested. Determining the request
probabilities for a set of files is in general a difficult problem,
because the answer changes temporally as well as geographi-
cally [15]. In response, we have developed a caching algorithm
that estimates the relative popularity of videos, by leveraging
the satellite’s global view of the network. The homogeneous
coverage area of the satellite allows it to keep up-to-date
popularity counters that can respond quickly to shifting trends,
due to the sheer number of requests it observes in a short

=

5 Content
3% Delivery
Network

a a7
End
Users

—Overlay End & &
— Terrestrial Users

Fig. 1. High level CDN topology with satellite overlay. Each of the M proxys,
with cache size S, serve requests for N end users. Directions of the arrows
indicate uni/bi-directional communication.

amount of time. Such uninterrupted, homogeneous coverage
simply is not possible with current terrestrial technology [13].
Each cache can use this global view to adjust its own local
estimates of popularity, allowing it to make efficient update
decisions upon the arrival of new content. We will describe
our algorithm in Section II, and will evaluate its efficacy in
Section IV.

The rest of this paper is organized as follows. In Section
II, we will present the CDN overlay architecture and caching
algorithms. In Section III, we will describe file popularity
modeling that we use in our simulations, and in Section IV,
we will evaluate our architecture and compare it to terrestrial-
based unicast. In Section V some related work will be dis-
cussed, and in Section VI we will conclude our work.

II. ARCHITECTURAL DESCRIPTION

In this section, we will explore the network architecture of
our proposed satellite overlay. On the satellite side we will
discuss queueing and multicasting, and on the server side we
will decribe the cache update algorithm.

A. Topology overview

Figure 1 depicts, from a high level, our satellite overlay to
CDN networks. On the terrestrial end, each of the M proxy
caches have storage capacities of size .S, and store popular
content one hop away from the N end users that they serve. We
assume that the subscriber regions are geographically disjoint,
and that the average number of users in each region () is
constant. The proxy caches have a bidirectional connection to
the rest of the CDN, which is hierarchial in nature and contains
all content origin servers.

There are two reasons why the injection point is chosen
to be one-hop from the users. First, it enhances QoS through
reduced latency. Second, it carries the congestion alleviation
through all portions of the CDN; in particular, the mobile

backhaul bottleneck connecting the proxys to the rest of the
CDN in the case of cellular.

The Central Station serves as the coordinator between the
satellite overlay and the rest of the CDN [16]. It receives
requests for content that were missed at the proxy caches and
forwards them to the satellite. The satellite, in turn, fetches this
content from the CDN and multicasts the requests to the proxy
caches. We assume that the coverage area of the satellite is
large enough to include all proxy caches served by the CDN.

B. Satellite and multicast

Here, we will give an overview of the logic we envision
governing the satellite overlay network. There are two main
portions: queuing and multicast.

1) Queueing: The queue keeps track of the files that are
pending multicast transmission. When the network routes a
request to the satellite overlay, it will first check if the file is
currently queued. If not, the overlay will fetch the content
from the CDN, and add it to the queue. Since this is the
first outstanding request for the file since the last multicast
transmission for it, the overlay will initiate a stream to be sent
out in a prescribed amount of time from now, say TIMEOUT.
Identical requests arriving within the TIMEOUT window will
be served with this transmission.

The queue gives the satellite the ability to aggregate iden-
tical requests and multicast them simultaneously, rather than
sending individual unicast streams. Of course, while larger
values of TIMEOUT improve bandwidth efficiency, they also
imply a longer average delay in delivering the content. This
highlights the fact that the overlay is best suited for bandwidth
intensive, delay-insensitive content, like non-real time video.
Even so, it is worth mentioning that TIMEOUT can be kept
relatively small while still witnessing significant improvement
in the peak bandwidth.

2) Multicasting: Once TIMEQOUT is reached for a given file
in the queue, the overlay network will add it to the multicast
stream. At this point, it will be simultaneously broadcasted to
all proxys in the coverage area. This will clear all requests
currently in the queue for this particular file. The number of
files that can be multicasting simultaneously is limited by the
satellite bandwidth, as well as the stream rate of each file
currently transmitting.

It is important to ensure that the satellite stream is not
overloaded, and hence, we treat the peak bandwidth provision
as a design parameter to be determined in our evaluation.
But once in operation, the overlay network may encounter
a situation where multicast demand is greater than supply. In
this case, some requests would need to be dropped, or re-
routed terrestrially, as they expire in the queue. As a result,
the overlay network would need to prioritize elements of the
queue, to determine which will be selected upon the opening
of a slot in the multicast stream. One possibility is to keep
track of the number of outstanding requests for each queued
file, and to prioritize by the ratio of this number to the file size.
Denote the number of outstanding requests for file ¢ as n;, the
size as f;, the stream rate as b;, and the satellite bandwidth as
B. When a file is finished transmitting, the next file I to be
multicasted can be selected as follows:

I = argmax (m/fl :b; < B — Z bk> , (D

i€Q keMC
where Q is the set of files in the queue, and MC is the set of
files currently multicasting. Equation (1) is favoring queued
files that are smaller (i.e., they will spend less time consuming
bandwidth) and have more outstanding requests, constrained
by the fact that the bit rate of the file must be smaller than
the available multicast rate.

Beyond multicasting, the overlay keeps track of the aggre-
gate requests across the entire coverage area of the CDN.
We call this count the global popularity, because it gives a
network-wide estimate of the relative popularity of the files.
The satellite frequently updates the proxy servers with these
values so they have an up-to-date, global view of the network,
which they can use when updating their caches. The satellite
should also keep track of the request trajectory over some
reasonable window, to factor in temporal shifts in popularity.

C. Proxy caches and update algorithm

Now, we will turn to the logic for managing requests at the
proxys. Recall these proxy servers are at the edge of the CDN,
as shown in Figure 1.

When a user requests a file, it may or may not be in the
local cache. If it is, this counts as a cache hit, and the proxy
serves the request immediately. If not, this is a cache miss,
and the request is transferred upstream to the CDN.

Each proxy keeps track of the number of requests it has seen
for each file, including those that have been requested but are
not in the cache. We call this the local popularity, because it
gives an estimate of the relative popularity of the files specific
to the proxy. As with global popularity, temporal shifts should
be taken into consideration when updating this counter over
long time periods.

When a file begins multicast transmission from the satellite,
each proxy needs to make two decisions: whether to stream
the file, and whether to cache it.

1) Stream: If the proxy has an outstanding request from
one or more clients for this piece of content, then it should
be streamed to the necessary recipients. The proxy can keep
track of outstanding requests by logging the information in its
local cache.

2) Cache: If the remaining space in the cache is large
enough to fit the file, then the proxy will download and store
it. It will keep track of its local and global popularity counters
accordingly. On the other hand, if there is not enough room,
then a cache update decision must be made. We will describe
this process now.

In our caching scheme, each proxy weights the local and
global popularity of each file, to compute a hybrid popularity
metric. Which one should be weighted more depends on how
accurate the local estimate is expected to be, given the small
number of requests each individual proxy witnesses relative to
the overall. The file popularities will vary to some extent from
region to region, but it is likely that the local estimate will lack
the sample size necessary for accurate caching information,
and hence we take the global estimate as a baseline.

For file 7 at cache m, denote the global popularity by G;,
and the local popularity as L, ;. Also, let w € [0, 1] be the
global weighting factor. We define the hybrid popularity metric
P, as follows:

1 2

Pri=0—=w)Ly,;+w {GL’”} .
The term on the left is the scaled local popularity. The term
on the right is a measure of the average requests occuring at
proxys other than the current one, scaled accordingly by w. If
w is set to 0, we are relying strictly on a local view. On the
other hand, if w is set to 1, we are relying strictly on a global
view. As we will see in Section IV, intermediate values of w
yield the best performance. They exploit the large sample size
obtained from the global view to learn the popularities more
accurately, while remaining robust to geographical shifts in
popularity.

When making the cache decision, we want to retain the
files with the highest perceived popularity and lowest size.
Our metric of interest is then the ratio of P, ; to the file
size f;. So, each proxy will find the number of files in the
cache with lowest P, ;/f; necessary to make room for the
incoming file. If each of their priorities is lower than that of
the incoming file, then they are evicted and the new content is
cached. Otherwise, the incoming file will not be cached, and
no change is made. Defining S to be the total cache size, and
Cy to be the set of files in cache m, Algorithm 1 summarizes
the update logic as to whether incoming file ¢ will be cached
or not.

Algorithm 1 Cache update algorithm

K+ 0
cache < 1

while (s Y een i < fi> do
k = argmin;cq \g (Pin.j/ f5)

if P, < P, ; then
K+ {K, &k}
else
cache «+ 0
break
end if
end while

if cache = 1 then
Cn < (Cp\K) Ui
end if

In this algorithm, K is the set of files that will be evicted from
the cache if they have lower priority than file <.

III. CLIENT REQUESTS

It is imperative to model user behavior with a high level of
sophistication, to guarantee realism in our simulations. To do
this, we must consider common file popularity distributions,

and temporal/spatial variation thereof. In this section, we will
describe our models thereof.

A. File popularities

It is a well-cited result that file popularities tend to follow
a heavy-tail distribution. This means that the majority of
requests occur for a relatively small fraction of the content.
Observations of this characteristic has been noted in data logs
for various CDNss, e.g. see [9], [10], [11], [12], [14].

Such a trend is readily quantified by Zipf’s law. Specifically,
if we ordered the files from most to least popular at a given
point in time, then the relationship governing the frequency at
which the file of rank ¢ will appear is given as follows:

7)o (1.)&. 3)

7

That is, the probability of a request occuring for file 7 is
inversely proportional to its rank, with a shaping parameter
a. A larger o implies that more requests occur for a smaller
fraction of the content, making the network more amenable
to a caching solution. Values of o have been cited between
0.5 and 0.8 [9]. If we had 10,000 files, this would mean
that 50% of requests occur for the top 25% and 6% of the
content, respectively. In Section IV, we will investigate how
the performance of our solution can vary with a.

B. Temporal and spatial modeling

File popularities change geographically as well as tempo-
rally [15]. However, it is difficult to pinpoint exactly how
they change for a specific CDN without access to weekly and
monthly data logs across a large number of regions. We will
describe intuitive methods we use to model these variations.

1) Spatial dynamics: To model geographical shifts, we
divide files into two different types: local and global.

e Global: Global files will not change rank geographically.
In other words, they will retain the same relative popu-
larity in each region. We expect the majority of files to
fall into this category. An example would be a recently
viralized YouTube video, which is likely to gain high
popularity in all regions.

e Local: Local files will change popularity rank from region
to region. An example of this would be video replays of a
sports game at a stadium, which are likely to be requested
frequently by those around the area, but not necessarily
by those removed from the region.

These differences emphasize the importance of factoring
global and local popularity into Equation (2) for use in the
cache update algorithm. To simulate the different classes, we
assume that a certain fraction of files (g) are global, while the
others are local. For the local files, we permute their ranks in
the Zipf distribution from region to region, while the global
files retain the same rank everywhere.

2) Temporal dynamics: The relative popularity of the files
will vary over time as well. The frequency of such shifts will
depend on the type of content considered. This emphasizes
the importance of our caching solution to quickly adapt to
dynamic shifts over time, while remaining robust to random
fluctuations. To factor this in, we consider small periods
of time (on the order of a few hours), and measure the
performance at the end of the time period.

Naturally, their will also be significant time-of-day fluctua-
tions in request patterns. For instance, cellular networks tend to
peak mid-day [17], while VoD is most popular at night (local
time) [14]. As we are concerned with peak network conditions,
we take the analysis period to be during peak hours.

IV. CASE STUDIES

We will now delve into two specific CDNs and quantify
improvements that satellite-based multicasting can provide.
Our case studies are Video on Demand (VoD) and Cellular.
As we will see, they have different network parameters but
are both amenable to our solution.

We should highlight that our driving purpose here is to
compare the performance of the overlay to the terrestrial,
rather than simulate the hybrid network as a whole. As a result,
we analyze each separately.

A. Video on Demand

Virtually all cable providers (Comcast, Time Warner, etc.)
offer video on demand services to the home. In these systems,
headends are the facilities that receive the content for process-
ing and local distribution [14]. A headend is typically equipped
with several large antennas for reception of cable/satellite
TV networks already, making them ideal locations for cache
injection. A large city with cable could have a few headends.

We ran simulations for a large VoD system. The parameters
and their values we used are shown in Table I. The default
column is the value we assume unless otherwise stated, while
the minimum and maximum give the range varied in some of
the graphs. The file size is the exception, which was varied
randomly between 2 GB (roughly 45 min HD at 6 Mbps) and 6
GB (roughly 135 min) in all simulations. With 10,000 videos,
this gives a total library size of roughly 40 TB. The cache
size at each of the 100 headends, by default, is 25% of this,
trading off improved hit rate with cost of additional storage.
The default Zipf parameter o of 0.8 limits the best possible
hit rate with the default cache size to be slightly greater than
70% (that is, 70% is achieved if the cache can discover and
store the most popular 25% of the videos). From intuition, we
set the global popularity to 90%, meaning that 10% of the
files will have varying popularities.

Our simulations will quantify: (1) the benefit of multicast
(over unicast), (2) the advantage of our caching algorithm, and
(3) the importance of accurately estimating the heavy-tailed
popularity.

1) The benefit of multicast: One of the main benefits
of the satellite overlay is the ability to send content via
multicast, and service multiple requests at once. To this end,
we have simulated the performance of the VoD network under

TABLE I
VALUES ASSUMED BY THE VOD PARAMETERS IN SIMULATIONS.

’ Parameter H Min ‘ Default ‘ Max ‘

Cache headends, M - 100 -
Subscribers per headend, N - 5000 -
Average daily requests/subscriber - 1 -
Cache storage per headend, S (TB) 1 10 40
Video size, f; (GB) 2 4 6
Bit rate, b; (Mbps) - 6 -
Number of videos, L 10,000 -

Global popularity, g (%) 0 90 100

Global weight, w (%) 0 50 100

Zipf parameter, o 0.5 0.8 1.2

satellite-based multicast, and compared it to terrestrial-based
unicast. In the former, caches have a global view due to the
presence of the satellite overlay, and have much more frequent
opportunities to download content. In the latter, each cache
operates independently: they make storage decisions on their
own, and only receive what is requested by their subscribers.

We quantify performance both in terms of the peak band-
width required, as well as the average cache hit rate. By
intuition, we expect these to be inversely related, as a higher
hit rate implies that less requests reach the CDN in the first
place, therefore lowering the requisite bandwidth.

The results are shown in Figure 2. For all values of cache
storage, the multicast topology has higher performance than
the unicast. But the important point is how well the multicast
scenario scales with increasing cache storage: the peak band-
width is decaying rapidly at all points. The performance of
the unicast, on the other hand, saturates at around 10 TB.
When each headend operates independently, they are at a
disadvantage, because they do not have a large sample size to
accurately model popularity and make instantaneous caching
decisions. This results in a large number of requests that have
never been seen before, and hence are not yet cached.

We can expand on this point by considering the cache size
of 40 TB, which is roughly the same as the library. In this case,
no cache evictions will be made, and every file requested will
be stored. The sheer number of requests obtained on a global
scale allows each cache to populate rapidly under multicast. As
a result, it achieves an enormous decrease in peak bandwidth
over unicast, from 78.5 to 5.87 Gbps (an improvement of over
90%), and an improvement in hit rate from 61.7% to 98.9%.
At 10 TB, the improvement over unicast is still reasonably
substantial, with a bandwidth decrease from 78.8 to 59.6 Gbps
(roughly 25%) and a hit rate increase of over 7%.

It is worth mentioning the analysis period used for each
topology. The multicast was only run for a simulated time of
6 hours, while the unicast was given 24 hours. The results
shown in Figure 2 were taken to be the average over the last
three hours in each case (the unicast was further averaged over
20 independent trials). This would put the multicast scenario at
a disadvantage, since it had only a fourth of the time than that
of unicast to stabilize its cache. Despite this, the multicast
achieves almost ideal performance, while the unicast is not

- ==Unicast BW - - -Multicast BW ¢ Unicast HR ¢ Multicast HR
140 T T T T T T T 100
.
\ .
120 190
N .
N i
2 100F 3N 180
2 AN -
e N =
- 80} N Spwsowobuoorobrseseseswssdoosndoena g0
il AN o
: * . 5
. .
S 60f ¢ $ g 160 =
m . ~ I
x Sso
© . S
& aof 150
20} 140
o0 5 10 15 20 25 30 35 480

Cache Storage (TB)

Fig. 2. Comparison between satellite-based multicast and terrestrial-based
unicast for varying cache storage at each headend. We use peak network
bandwidth and hit rate as our metrics. This highlights the ability of multicast
to greatly leverage increased cache storage, while the performance of unicast
saturates quickly.

scalable past 10 TB.

2) Caching algorithm performance: Here, we will inves-
tigate the performance of our cache algorithm described in
Section II. Of particular interest is how the performance
varies with different levels of global popularity, and what
the resultant weight w should be to obtain the best results.
For benchmarking purposes, we will also compare our results
to the commonly cited, least-recently used (LRU) caching
algorithm.

|---LRU---LFU---w=20%---w=50%---w=80%---w=100%
80 T T T

70t Joed

60f

Hit rate (%)

40t]

30~ 1

200 10 20 30 40 50 60 70 80 90 100
Global popularity, g (%)

Fig. 3. Performance comparison between different caching schemes, for
varying global popularity. The conventional LRU is clearly suboptimal, and
used as a benchmark. The best results are obtained using our caching
algorithm with a global weight somewhere between zero and one, irrespective
of the global popularity. Note that our caching scheme degenerates to LFU
when w = 0%.

In Figure 3, we show the hit rate as the global popularity
varies under different caching schemes. For LRU, we assume
each cache operates independently, and the resultant hit rate is

constant at roughly 35%. The other traces correspond to our
caching algorithm for different weights. With a weight of zero,
each cache relies on a strictly local view, and the algorithm
degenerates to a form of least-frequently used (LFU). The
difference from conventional LFU is that we prioritize by the
ratio of the request count to the file size, rather than just the
former. In this case, the performance is independent of g (save
fluctuations), achieving a hit rate that is consistently higher
than LRU by roughly 10%.

The reason that the (modified) LFU is superior to LRU is
two-fold. First, LFU is more robust to random spikes in request
counts, because it keeps track of the absolute frequency of
each file, whereas with LRU the most recent request is always
the highest priority. Second, LFU does not automatically evict
upon a cache miss, since the new file is required to have a
higher frequency than at least one file in the cache; on the
other hand, LRU will always evict, even for a file that has
only been requested once.

As w is increased in Figure 3, we start incorporating the
global view into the mix. The hit rates for weights of 20%,
50%, and 80% are monotonically increasing with global pop-
ularity, exhibiting nice, linear trends. As the content becomes
more global, the hit rate increases from a minimum of roughly
50% to a maximum of 70%. It is important to note that for
each of these weights, the performance is visibly identical. As
long as we factor in at least some global popularity, we enjoy
the linear trend, because the requests we see globally help the
popularities converge rapidly. And of course, the larger g is,
the better the performance becomes.

Additionally, we want to keep w below 100%, because
at this extreme the performance begins to decay. This is
especially true for low values of g, because then we are relying
on a global view when the popularities are predominantly
local. Regardless of the global popularity, the best results will
always be obtained for w € (0, 1), which gives some weight
to both local and global popularity counters. While absolute
performance is not independent of g, the optimal choice of w
is.

3) Heavy-tail effects: The popularity characteristics of the
VoD system are also important to consider. We will now
investigate the effect of the Zipf parameter on performance.
Intuitively, we expect performance to increase as « becomes
larger, because that means more requests occur for smaller
fractions of the content. This makes caching decisions much
more transparent.

In Figure 4, we plot the peak bandwidth and hit rate as
« varies, for different amounts of cache storage. Clearly, the
bandwidth decreases at « gets larger, in all cases. For 5 TB
caches, it drops from 133 Gbps at a = 0.5to 21.2 at o = 1.2,
which is a reduction of 84%. Also, when « is small, we obtain
significant performance gains by adding more cache storage:
for o = 0.5, increasing by a factor of four decreases bandwidth
by a factor of two. As « increases, we see diminishing returns
in increasing storage, because there is less content worth
caching.

We can also use Figure 4 finding necessary cache storage
to limit the peak bandwidth. For instance, to obtain a peak
of 60 Gbps when o« = 0.5, we need a cache size of 20 TB.

---BW,5TB---10TB---20TB * HR,5TB *+ 10TB * 20TB
160 T T T T T T 100
140+ | ? . 490
_120f Ty . 180
1] S
Q .. .
Q L . ~
© 100f > ~~ i 170 ~
s BRI AN : R
£ N e
'g 80 Taed Ty +60 %
c \\ ~\ 24
$ B0f Tl %0
[~-. ~. S
o) ~.l. S Sl
& 4of 140
20} B e L])
8.5 0.6 0.7 0.8 0.9 1 1.1 1.30
Zipf parameter, o
Fig. 4. Illustration of the effect that the Zipf shaping parameter has on

performance. The larger « is, the better. Additionally, the required storage
to guarantee a given bound on peak bandwidth decreases as « increases. This
sheds light on the importance of accurately estimating o for a CDN.

But when o« = 0.8, we can tolerate 10 TB caches, and when
it is 0.9, 5 TB is feasible. Clearly, proper estimation of « is
an important design step, so that one can make sure enough
storage is provisioned to guarantee a given bound on the peak
satellite bandwidth.

B. Cellular

We envision cellular as another application for the proposed
overlay. In these networks, the last hop before the end users are
cell towers. There are a few hundred thousand such towers in
the US. Behind them lies the mobile backhaul, and since this
is typically the bottleneck location, the towers are ideal cache
injection points. Some carriers claim that they do currently
cache content, but to our knowledge, their methods are not
available in the public domain.

In this section, we will investigate the efficacy of including
different amounts of cache storage at cell towers, compli-
mented with the satellite overlay network. In Table II, we list
the cellular parameters we use during simulations. Generally,
there are many more towers than headends in the case of
VoD, and each tower serves a much smaller number of users
(neglecting mobility). By default, we assume 10,000 towers
with 250 active users each, though these numbers could be
higher or lower depending on the coverage area and carrier.
The file sizes are significantly smaller than before, ranging
from 24 MB (roughly 10 minutes at 600 kbps) to 72 MB (30
minutes). At the same time, we assume an order of magnitude
larger library size of 100,000; though there are many billions
of files, the content on the Internet has an extremely heavy
tail, so most of these files will rarely be requested. With a
library size of 4.8 TB, the cache at each tower is varied from a
very small fraction to 25% of the total. Finally, for simulation
convenience, we assume all files are globally popular; from
our analysis in Figure 3, we do not expect this to affect the
hit rate dramatically as opposed to g = 0.9.

TABLE I
CELLULAR PARAMETER VALUES ASSUMED IN SIMULATIONS

Parameter H Min ‘ Default ‘ Max ‘

Cell towers, M 100 10,000 | 64,000
Users per tower, [N - 250 -
Average daily requests/subscriber - 2 -

Cache storage per headend, S (GB) 10 500 1200
File size, F; (MB) 24 48 72
Bit rate, B; (Mbps) - 0.6 -
Number of files, L - 100,000 -
Global popularity, g (%) - 100 -
Global weight, w (%) - 50 -
Zipf parameter, o - 0.8 -

We consider simulations along two dimensions: (1) a com-
parison between multicast and unicast, and (2) scalability with
increasing coverage area.

1) Muticast with cellular: First, we will compare satellite-
based multicast with fiber-based unicast for cellular, as was
done previously for VoD. The number of simulated hours for
each scenario is kept the same as before, to get a lower bound
on the performance for multicast.

The results are shown in Figure 5. For all values of cache
storage tested, the multicast performs significantly better than
the unicast. The minimum observed improvement, at 10 GB,
is a reduction in bandwidth from 43 Gbps to 16.5 Gbps (62%),
while the maximum, at 1.2 TB, is from 42 to 6.54 Gbps (84%).

Notice that for all values tested, the unicast does not scale
with increasing storage. This is contrary to the case of VoD in
Figure 2, where it did to some extent up to 10 TB. The reason
for this is that each tower sees many less requests in a given
amount of time than does a headend, and hence the cache is
based on a smaller sample size. For cellular, irrespective of
the cache storage, the smallest possible bandwidth via unicast
is 42 Gbps with a hit rate of under 10%. The cache size may
as well remain small.

Though the multicast scales with increased storage, there
is diminishing returns. But this is expected, for two reasons.
First, the bandwidth is already reasonably low, reaching 10
Gbps at 600 GB. Second, the hit rate is already more or less
maximized. We can see this second point by comparing the
multicast hit rate to the ideal plot in Figure 5. The ideal trace
is obtained by taking points from the cumulative distribution
function of the Zipf distribution, which gives the maximum
possible hit rate, attainable only when each cache is filled with
the most popular files. The multicast hit rate visibly achieves
the ideal case for all values of cache storage, only tapering off
slightly at 1.0 and 1.2 TB.

2) Increasing coverage area: We will now investigate the
effect of the coverage area on the peak bandwidth required.
Such a question is particularly important in the case of cellular,
where the coverage can vary significantly.

In Figure 6, the peak bandwidth is plotted as the number
of towers is varied. For multicast, three different cache sizes
are shown, and a unicast trace is included as a comparison.
We show the horizontal axis on a log scale, to better depict

== =Unicast BW - - -Multicast BW ¢ UnicastHR ¢ Multicast HR -~ Ideal HR

50 : : : : : 100
45} {00
4of o TTTmemTnTT g0

7 35} [S (¢

Sof e g

£

5 25 s {50 £

c Rt 14

© , =

@ 20} , Ja0 £

e ,

© N ;

& 150 7% 130

o el
L T S {20
. ¢ P v———eo
5l * 410
o ‘ i ; ; . 0
0 200 200 600 800 1000 1200

Cache storage (GB)

Fig. 5. Comparison between multicast and unicast solutions for the cellular
topology. We see that for all values of storage, the multicast significantly
outperforms the unicast, and achieves the maximum possible hit rate for a
wide range of cache sizes.

the range of towers considered. The exponential characteristic
of each trace indicates that the peak bandwidth varies linearly
with the number of towers. Notice that for multicast, a larger
cache size reduces the rate of increase in peak bandwidth. For
instance, at 500 GB, if we start with 32,000 towers, doubling
the coverage area increases the peak bandwidth from 29 Gbps
to 55 Gbps (26 Gbps), whereas at 1.5 TB, it only increases
from 17 Gbps to 33 Gbps (16 Gbps).

---Uni., 1.5 TB - - -Multi., 500 GB - - -Multi., 1 TB - - - Multi., 1.5 TB
100 T T T T T

90} : .
80} : 1
70t ¥ .
60(% 1
50(/ e
40} ’ Ao

30r - Pleciyfioy

Peak bandwidth (Gbps)

20f - RSP 1

10 S =

O1 2 4 8 16 32 64

Number of towers (in thousands)

Fig. 6. Plot of the peak bandwidth as the coverage area of the CDN is
increased, for different amounts of cache storage. Note the horizontal axis is
on a log scale, implying a linear relationship between bandwidth and coverage
area. The rate of increase becomes smaller as the cache size increases.

The linear nature of the data in Figure 6 was verified through
linear regression, which returned a correlation coefficient R >
0.999 for each trace. We quantify the incremental multicast
bandwidth per tower in Table III, giving the extra bandwidth
required when 1000 towers are added to the coverage area.

Increasing the cache size from 100 GB to 1.5 TB results in a
56% reduction in the incremental bandwidth. This highlights
the scalability of multicast with increasing cache size, whereas
unicast cannot leverage the extra storage.

TABLE III
INCREASE IN MULTICAST BANDWIDTH REQUIRED FOR EVERY 1000
ADDITIONAL TOWERS, FOR DIFFERENT CACHE SIZES.

Cache size (GB) | AGbps/1000 towers
100 1.18
500 0.856
1000 0.653
1500 0.516

C. Summary

We presented a wide range of results in this section. We
can draw four main conclusions.

1) Satellite—based multicast scales well with cache storage,
while terrestrial-based unicast does not. The maximum
improvement from latter to former was observed to be
over 80% for both the cellular and VoD topologies.

2) With satellite, the incremental bandwidth for increasing
coverage area drops considerably with cache storage.
In the cellular topology, a 45% reduction was observed
for an order of magnitude increase in cache size.

3) Incorporating a combination of local and global popu-
larity into the cache update yields the best performance.
For the VoD topology, the observed hit rate improved
linearly from 50% to 70% with increasing global frac-
tion g.

4) Knowledge of the Zipf shaping parameter « is an im-
portant design consideration when provisioning for peak
bandwidth and cache storage. For the VoD topology, the
required storage for a 60 Gbps peak was observed to
halve as o was increased from 0.5 to 0.8.

V. RELATED WORK

Satellite-based CDNs have been investigated in the past.
Specifically, there was a push for them in literature in the
early 2000s. Rodriguez and Biersack studied a web cache-
satellite distribution system, and quantified probabilistic upper-
bounds on performance in terms of hit rate [19]. Their analysis
is based on an unbounded cache size, where each accrues
content as it is broadcasted via satellite. While the notion of
an unbounded cache is perhaps feasible for storing webpages
on the order of tens of KB each, it is certainly not with the
advent of multimedia data. Around the same time, Armon and
Levy similarly studied a Cache Satellite Distribution System
(CSDS) for web content, where they relaxed the assumption
of an unbounded cache size [16]. They quantified the notion
of “cache contamination” in terms of items stored that are
not likely to cause cache hits. But their analysis is based
on an LRU caching scheme, and as we showed in Figure 3,
LRU schemes are not suitable for the CDN parameters we
investigated.

To our knowledge, we are the first to revive the notion of
satellite for contemporary CDNs. The closest work we find
to this was done by Galluccio et al., who studied satellite-
caching for the perceived future of content-centric networks
[15]. They present a strong analysis, and model user and
content profiles to draw geographical correlations that are used
for cache update. But to our knowledge, information-centric
networks have not been deployed yet. Further, we question the
applicability of a radially-decaying geographic popularity to
different types of CDNs, as well as the ability of their modified
LRU scheme to adapt to temporally changing profiles.

Beyond satellite-based solutions, there has been a plethora
of research on caching strategies for CDNs. The first discus-
sion on caching for a 3G cellular network was performed by
Ehrman et al., in the context of HTTP traffic, where much
consideration is given to webpage expiration [9]. Moreover,
infinite cache sizes are assumed. Again, we do not see this
as a feasible assumption for multimedia CDNs, and a largely
increasing fraction of cellular data is video. In the context of
VoD, Carbunar et al. recently advocated a “network-aware”
caching strategy, whereby proxy servers would make caching
decisions based on expected storage penalties, and fetch from
one another upon cache misses for load-balancing [14]. De-
spite the advantages offered by proxy peering relationships, we
believe such a network could benefit from a satellite overlay,
in terms of offloading high-bandwidth content and retaining a
global network view.

Finally, a recent work by Borst et al. considered distributed
caching by analyzing the tree-like distribution structure of
CDNs, and showed the network bandwidth reductions that
could be obtained when defining caching clusers in various
levels of the network [20]. In the future, we would like to
formulate cache injection as a placement problem to be solved
via optimization, similar to what they have done, and combine
it with our satellite approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an intelligent satellite-based
multicast and caching overlay for existing CDNs. We have
evaluated the potential benefits of multicasting via satellite
through simulations on two case studies. Our results show that
multicasting has the potential to provide significant bandwidth
reductions from terrestrial-based unicast solutions. Addition-
ally, it is scalable in terms of both cache storage and coverage
area of the CDN.

Beyond the scope of this paper, we have a plethora of future
work planned. First, there is an effort to obtain actual network
traffic data to support additional simulations. Such realistic
network data would greatly strengthen our claims, and add a
realistic, temporal aspect to our analysis.

Second, we will investigate optimization methods along
two caching dimensions: injection placement, and update
algorithm. Both of these can assist in maximizing overall
performance of our hybrid network. Competitive analysis of
different schemes would also be possible with realistic network
data.

Third, we will develop intelligent routing protocols for
directing desired traffic to the overlay, as well as for multicas-

ting. This would likely require estimating the average inter-
arrival times for different files, and defining a threshold below
which a file would be directed to multicast, and above which
it would be sent via unicast. Additionally, two different tiers
of service could be defined: “on-demand”, which would be
serviced terrestrially over fiber, and “delay-tolerant”, which
would be served via satellite. This could lead to an effective,
two-tiered pricing system for service operators.

In the coming months, we plan to investigate the above
three topics. Overall, we believe that our solution identifies a
new market opportunity for satellite, as it shows promise of
enabling scalability for CDNs in the future.

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2011 - 2016.
Cisco, 2012.

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2012 - 2017. Cisco, 2013.

[3] Jon Brodkin. Bandwidth Explosion: As Internet use soars, can
bottlenecks be averted? http://arstechnica.com/business/2012/05/
bandwidth-explosion-as-internet-use-soars-can-bottlenecks-be-averted/.
2012.

[4] Daniel Venmani and Djamal Zeghlache. Demystifying Link Congestion
in 4G-LTE Backhaul using OpenFlow. IEEE NMTS, 2012.

[5] Rob Bamforth. Mobile data congestion: Four ways to tackle the coming
capacity crunch. http://www.techrepublic.com/blog/european-technology/
mobile-data-congestion-four- ways-to-tackle- the-coming-capacity-crunch/
204. 2012.

[6] Gregg Levin. The Economics of Gigabit 4G Mobile Backhaul. Bridge-
Wave Communications, 2008.

[7] Jian Ni and Danny H. K. Tsang. Large-Scale Cooperative Caching and
Application-Level Multicast in Multimedia Content Delivery Networks.
IEEE Communications Magazine, 2005.

[8] Aditya Kishore. Operator CDNs: Making OTT Video Pay. Heavy Read-
ing, 2011.

[9] Jeffrey Erman, et al. To Cache or Not to Cache: The 3G Case. IEEE
Internet Computing, 2011.

[10] Meeyoung Cha, et al. I Tube, You Tube, Everybody Tubes: Analyzing
the World’s Largest User Generated Content Video System. ACM IMC,
2007.

[11] Meeyoung Cha, Pablo Rodriguez, Jon Crowcroft, Sue Moon, and Xavier
Amatriain. Watching Television Over an IP Network. ACM IMC, 2008.

[12] Frederic Thouin and Marc Coates. Video-on-Demand Networks: Design
Approaches and Future Challenges. IEEE Network, 2007.

[13] Gorry Fairhurst, Luca Caviglione, Bernhard Collini-Nocker. FIRST:
Future Internet - A Role for Satellte Technology. IEEE IWSSC, 2008.

[14] Bogdan Carbunar, et al. Predictive Caching for Video on Demand CDNss.
IEEE Globecom, 2011.

[15] Laura Galluccio, Giacomo Morabito, Sergio Palazzo. Caching in
information-centric satellite networks. /JEEE ICC, 2012.

[16] Aner Armon and Hanoch Levy. Cache Satellite Distribution Systems:
Modeling and Analysis. IEEE INFOCOM, 2003.

[17] Utpal Paul, et al. Understanding Traffic Dynamics in Cellular Data
Networks. /[EEE INFOCOM, 2011.
[18] Cell Phone Tower Statistics.

cell-phone- tower-statistics/.

[19] Pablo Rodriguez and Ernst W. Biersack. Bringing the Web to the
Network Edge: Large Caches and Satellite Distribution. Mobile Networks
and Applications, 2002.

[20] Sem Borst, Varun Gupta, Anwar Walid. Distributed Caching Algorithms
for Content Distribution Networks. IEEE INFOCOM, 2010.

http://www.statisticbrain.com/

