
CS577 Sp’05 Lecture Notes
Lecture 4



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 2

Example: Count

Count.java:

class Count {
public static void main(String[] s) {

int i;
for (i = 0; i < 10; i++)
System.out.println(i);

}
}

% javac Count.java
% java Count
0
1
2
3
4
5
6
7
8
9



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 3

Example (cont.)

% javap -c Count
Compiled from Count.java
synchronized class Count extends java.lang.Object

/* ACC_SUPER bit set */

public static void main(java.lang.String[]);
Count();

Method void main(java.lang.String[])
0 iconst_0
1 istore_1
2 goto 15
5 getstatic #6 <Field java.io.PrintStream out>
8 iload_1
9 invokevirtual #7 <Method void println(int)>

12 iinc 1 1
15 iload_1
16 bipush 10
18 if_icmplt 5
21 return

Method Count()
0 aload_0
1 invokespecial #5 <Method java.lang.Object()>
4 return

%



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 4

Java Virtual Machine Architecture

A JVM contains the following components:

Program Counter (per thread)

Stack (per thread)

Heap (shared) – contains all objects

Method Area (shared) – byte-codes and constant pools

Native method stacks(per thread, if required)

Method code is a sequence ofbyte-codeinstructions that
implement methods (and constructors). The JVM byte-code is
stack-based; most instructions take their operands from the stack
and leave their results there.

Each class has aconstant pool, which contains all the constant
data referenced by the methods of that class, including numbers,
strings, and symbolic names of other classes and members
referenced by this class.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 5

Stacks and Frames

There is one stack per thread. A stack consists of a sequence of
frames; frames need not be contiguous in memory. Frame size
and overall stack size may be limited by implementations.

One frame is associated with each method invocation. Each
frame contains two areas, each of staticallyfixed size (per
method):

• local variable storage associated with the method, and

• anoperand stackfor evaluating expressions within the method
and for communicating arguments and results with other
methods.

The local variable area is an array of words, addressed by word
offset from the array base. Most locals occupy one word; long
and double values occupy two consecutive words. The arguments
to a method (includingthis, for instance methods) always
appear as its initial local variables.

The operand stack is a stack of words. Most operands occupy
one word; long and double values occupy two consecutive
words, which must not be manipulated independently.

Frames may optionally contain additional information, e.g., for
debugging.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 6

Types and Verification

The JVM directly supports each of the primitive Java types
(exceptboolean, which is mapped toint). Floating-point
arithmetic follows IEEE 754. Values of reference types
(classes,interfaces,arrays) are represented as heap pointers;
layout of these values is implementation-dependent.

Data values are not tagged with type information, but
instructions are. When executing, the JVM assumes that
instructions are always operating on values of the correct type.
The instruction set is designed to make it possible toverify that
any given method is type-correct, without executing it. TheJVM
performs verification on any bytecode derived from an untrusted
source (e.g., over the network).

At any given point of execution, each entry in the local variable
area and the operand stack must have a well-definedtype state;
i.e., it must be possible to deduce the type of each entry
unambiguously.

This is an unusual property for stacks! To enforce it, JVM code
must be written with care. For example, when there are two
execution paths to the same PC, they must arrive with identical
type state. So, for example, it is impossible to to use a loop to
copy an array onto the stack.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 7

Instruction Set

Each JVM instruction consists of a one-byteop codefollowed
by zero or moreparameters. Instructions are only byte-aligned.
Multi-byte parameters are stored in big-endian order.

The inner loop of the JVM execution engine (ignoring exceptions)
is effectively:

do {
fetch opcode;
if (parameters) fetch parameters;
execute action for opcode;

} while (more to do);

Most instructions take their operands from the top of the stack
(popping them in the process) and push their result back on the
top of the stack. A few operate directly on local variables.

Most instructions encode the type of their operands; thus, many
instructions have multiple versions distinguished by their prefix
(i,l,f,d,b,s,c,a).

The instruction set is not totally orthogonal; in particular, few
operations are provided for bytes, shorts, and chars, and integer
comparisons are much simpler than non-integer ones. In all,201
out of 255 possible op-code values are used.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 8

Families of instructions

Instructions group into families. Each family does the samebasic
operation, but has a variety of members distinguished by operand
type and built-in arguments.

Example:load pushes the value of a local variable (specified as
a parameter) onto the stack. Variants:

Load 1-word integer from local variablen:
iload n (0 ≤ n ≤ 255)

iload_n (0 ≤ n ≤ 3)

wide iload n (0 ≤ n ≤ 65535)

Load 2-word long from local variablesn andn + 1:
lload n (0 ≤ n ≤ 255)

lload_n (0 ≤ n ≤ 3)

wide lload n (0 ≤ n ≤ 65535)

Load 1-word float from local variablesn:
fload n (0 ≤ n ≤ 255)

fload_n (0 ≤ n ≤ 3)

wide fload n (0 ≤ n ≤ 65535)

Load 2-word double from local variablesn andn + 1:
dload n (0 ≤ n ≤ 255)

dload_n (0 ≤ n ≤ 3)

wide dload n (0 ≤ n ≤ 65535)

Load 1-word object reference from local variablen:
aload n (0 ≤ n ≤ 255)

aload_n (0 ≤ n ≤ 3)

wide aload n (0 ≤ n ≤ 65535)



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 9

Load and Store

• load - push local variable onto stack
• store - pop top-of-stack into local variable
• push,ldc,const - push constant onto stack
• wide - modify following load or store to have wider
parameter.

Arithmetic and Logic

• add,sub,mul, div, rem, neg
• shl,shr, ushr
• or, and, xor
• iinc - increment local variable

div andrem will throw anArithmeticException given a
zero divisor.

Conversions

• i2l,i2f,i2d,l2f,l2d,f2d.
• i2b,i2c,i2s, etc. - never raise exception.

Objects

• new – create new class instance
• newarray – creates new array
• getfield,putfield – access instance variables
• getstatic,putstatic – access class variables
• aload, astore – push, pop array elements to,from stack
• arraylength
• instanceof, checkcast – runtime narrowing checks



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 10

Stack management

• pop,dup,dup x,swap

Control transfer

• if icmpeq,if icmplt, etc. – compare ints and branch
• ifeq,iflt, etc. – compare int with zero and branch
• if acmpeq, if acmpne – compare refs and branch
• ifnull,ifnonnull – compare ref with null and branch
• cmp – compare (non-integer) values and push result code
(-1,0,1)
• tableswitch,lookupswitch – for switch statements
• goto – target is offset in method code
• jsr,ret – intended forfinally
• athrow – throw explicit exception

Method invocation

• invokevirtual – for ordinary instance methods
• invokeinterface – for interface methods
• invokespecial – for constructor (<init>),private, or
superclass methods
• invokestatic – for static methods
• return



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 11

Multiple Encodings

Some common operations can be implemented by more than one
instruction, with differing levels of efficiency. For example, to
load an integer constanti, we have:

One-byte sequences for−1 ≤ i ≤ 5

iconst_m1; iconst_0; iconst_1; iconst_2;
iconst_3; iconst_4; iconst_5

Two-byte sequences for−128 ≤ i ≤ 127

bipush i

Three-byte sequences for−32768 ≤ i ≤ 32767

sipush i

Two-byte sequences for arbitraryi loaded from first 255 entries in
constant pool

ldc < i >

Three-byte sequences for arbitraryi loaded from any entry in con-
stant pool

ldc_w < i >

javac should choose best available sequence based oni.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 12

Constant Pool

The constant pool contains the following kinds of entries:

• Utf8 – Unicode string in UTF-8 format.

• Integer,Float,Long,Double

• String – String, represented byUtf8

• Class – Fully-qualified Java class name, represented byUtf8

• NameAndType – Simple field or method name plus field or
methoddescriptor, each represented byUtf8.

• Fieldref, Methodref, InterfaceMethodref
– Class plusNameAndType.

Descriptors are strings that encode type information for fields or
methods in terms of base types and fully-qualified class names.
Method descriptors include the types of method parameters and
result.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 13

Java Class File Format

The class file format is the real standard of binary
interoperability for JVM programs. Each class file describes a
single class or interface. It is a stream of bytes, which may be
obtained from a file, over a network, or elsewhere.

The class file contains:

• Magic number and compiler version information.

• Constant pool.

• Access flags for this class.

• Name of this class, its super-class, and its direct
superinterfaces.

• Number, names, access flags, type descriptors, and values (if
constant) for its fields.

• Number, names, access flags, type descriptors, code, and
exception tables for its methods.

• Additional attribute information (e.g., for debugging) may be
attached at the class, field, or method level.



PSU CS577 Sp’05 Lecture 4c© Andrew Tolmach 2005 14

Summary

JVM Bytecode is intended to be both easy to interpret and easy
to use as compiler IR.

As an IR, it’s pretty high-level.

It explicates:

• Parameter and local variable offsets

• Temporaries (using stack)

• Order of evaluation

• Control flow within procedures

• Exceptions

But NOT:

• Object layout and field offsets

• Array access

• Method calls (virtual or otherwise)

• Inheritance hierarchy

All these must be resolvedinsidethe JVM implementation.

Safety issuesdrove design


