CS 577 Homework 2 — Improving a Just-in-time compiler — due 4m, Monday, May 23, 2005

On the course web page, you'll find C code for a just-in-timepier handling a small subset
of JVM instructions. The Java subset supported includegeartarithmetic, integer arrays, static
methods, and a minimal set of output facilities, just ashe §olution to) Homework 1. Also, pro-
grams are restricted to 6 local variables and a maximum siaelof 8. The compiler is defined by
asetof Cfiles¢onpi | e. c,cl ass. [ch] ,basi cs.[ch],bytecode. h,paramsi ze. h,

st ack_si ze_change. h), and anakef i | e, which generates an executabplet . This can be
invoked just like the usuglava interpreter on a single class file, but fails on programsidathe
supported subset. Before executing the generated codei, thdisplays it on standard error.

Your assignment is to improyje t so that it doesn’t have to generate instructions for loatlieg
stack from local variables, storing from the stack to locaiiables, duplicating stack elements,
or swapping stack elements. (You may need to introduce cosgeg register-register move
instructions at join points which the current t doesn’t require; such extra instructions don't
count.)

For extra credit (but mainly just for fun), you can furthergravej i t to avoid generating in-
structions for loading small constants onto the stack.gThfairly straightforward, but the details
are rather complicated.) You can also try to avoid the corsgimg move instructions mentioned
above, do a better job of filling delay slots, handle spillsgarly, etc.

Details

The provided i t takes a very naive approach to register allocation: locahl&es 0 through 5
are always stored in SPARC registéfisO through% 5, and stack slots O through 7 are always
stored in% O through% 7. (For more details on SPARC register conventions, and foerot
facts about the SPARC architecture, see the architectuneahatht t p: / / www. sparc. com

st andar ds/ V8. pdf .) To determine which stack slots are accessed by a givenuatismn, it is
necessary to keep track of the stack size at each progrart) paiich is guaranteed by the JVM
specification to be uniquely defined for any verified prograrhe provided i t computes and
stores stack sizes by taking a preliminary pass over the, @o@xecution order. (Note that such
calculations cannot in general be performed in simple oodl@ncreasing pc, because following
an unconditional GOTO, the stack size may be unknown.) A meakstic implementation would
handle more than 6 locals or 8 stack slots by spilling regggtememory when necessary, but we’'ll
ignore this issue here.

The main disadvantage of this approach is that it generategister-register move instruction for
each load or store between the stack and a local variable lté&mative approach is to maintain
a flexible assignment from stack slots and locals to registehen a load or store occurs, the
assignment is updated but data aren’t actually moved. Fample, given the Java Function

static void foo(int a)
int b = 20;
int c (a- b)) * (b- a);
a=0>b+ c;

here’s what we'd like to generate:

BYTE CODE
static void foo(int);

Code:

NoORWNO

10:
11:
12:
13:
14:
15:

save %6, - 96, %06 vO:
bi push 20 or %0, 20, % 3 sO:
istore_1 vO:
iload O sO:
iload_ 1 sl:
i sub sub %0, % 3, % 1 sO:
iload_ 1 sl:
iload O s2:
i sub sub % 3, % 0, % 4 sl:
i mul smul % 1,%4,%4 sO:
istore_2 vO:
iload 1 sO:
il oad_2 sl:
i add add % 3, % 4, % 1 sO:
istore_O vO:
return jmpl % 7,8, %90

SPARC CODE EM TTED STATE

restore %0, %90, %90

%0
% 3
%0
%0
% 3
% 1
% 3
%0

% 4
% 4
%0
% 3
% 4
% 1
% 1

vli:
vO:
vl:
vO:
sO:
vO:
sO:
sl:
vO:
sO:
vO:
vl:
vO:
sO:
vO:
vl:

% 1
%0
% 3
%0
%0
%0
% 1
% 3
%0
% 1
%0
% 3
%0
% 3
%0
% 3

V2.
vl:
V2.
vl:
vO:
vl:
vO:
sO:
vl
vO:
vl
V2.
vl:
vO:
vl:
V2.

% 2
% 1
% 2
% 3
% O
% 3
% O
% 1
% 3
% 0
% 3
% 4
% 3
% O
% 3
% 4

v2:

v2:
vl
v2:
vl

v2:
vl:
v2:

v2:
vl
v2:

% 2

% 2
% 3
% 2
% 3

% 2
% 3
% 2

% 4
% 3
% 4

v2:

v2:

v2:

v2:

To implement this approach, the register state could betaiagd in a structure something like

this:

t ypedef struct
i nt size;

reg stack[MAX_STACK] ;

[l stack size (always <= met hod->max_st ack)
/'l stack registers (valid for

reg var[MAX LOCALS]; [/ var registers (valid for

St at e;

[0..size-1])

% 2

% 2

% 2

% 4

[0..nmethod->max_| ocal s-1])

Stack operations work on the registers recorded in the; stateoperation that produces a new

value puts it in an otherwise unused register. For exanmh@#BD is processed by something like:

state.size -=2;

reg target

= get _reg(state);

EM T(gen_op(ADD _OP, target, state. stack[state.size],state.stack[state.size+l]);
state.stack[state.size] = target;
Sstate. si ze++;

Here we assumget _r eg(st at e) returns a register that is unusedsihat e. An instruction
like | LOAD.O is processed just by changing the state:

state.stack[state.size++] = state.var[0];

andl STORE_O would be processed by:

state.var[O0]

= state.stack[--state. size];

2

The main complication with this approach is that differeasie blocks will typically get different
ideas about where the variables and stack slots live. Théfeeedt states must beeconciled

at any control flow join point. The most straightforward waydo this is to issue a series of
register-register moves to make one state match the othewll Yyotentially need to perform
reconciliation before any jump, and also whenever confials' through” to an instruction that is
itself a jump target. To see whether reconciliation is neags and figure out what to move, you
can simply compare the stadfter the execution of the earlier instruction to the desirecediefore
the execution of the next one.

The most straightforward way to modify the existingt for this approach is to augment the pre-
liminary pass over the program to compute complete statesiréghan just stack sizes. You may
find it convenient to compute and store states both beforeafiadeach instruction, to aid in rec-
onciliation. Then use the computed state information wéiiteting instructions during the second
pass. (If you follow this approach, the code given f&DD above will be split into two parts: in
the first pass, the target register will be chosen and thé& stae adjusted; in the second pass, the
corresponding state information will be read to generageatfyuments t&M T.) Alternatively,
you can compute state information and emit code on the sas® thas is simpler in some ways,
but may require you to alter the control flow of the method imeaases in order that you always
know the state before you start emitting code.

How to submit your homework.
Submit the homeworky email prior to the beginning of class on the due date. You shouldsub

the following items asittachments to your mail:
e Your modified versionof i t . c.

e A brief explanation (in plain text) of how reconciliationrislated to the conversion of SSA
back to ordinary 3-address code (see textbook Section)9.3.5

