
CS 577 Homework 1 – Extending a bytecode interpreter – due 4pm, Monday, April 18, 2005

On the course web page, you’ll find C code for an interpreter for a small subset of JVM instruc-
tions. The Java subset supported includes integer arithmetic, static methods, and a minimal set
of output facilities. The interpreter is defined by a set of C files (interp.c, class.[ch],
basics.[ch], bytecode.h) and amakefile, which generates an executableinterp.
This can be invoked just like the usualjava interpreter on a single class file , but fails on programs
outside the supported subset.

Your assignment is to extendinterp to deal with integer arrays. This will involve adding support
for about twelve new JVM instructions, and testing your modifications.

Details

The subset handled by the existing interpreter should be sufficient to execute simple integer pro-
grams involvingstatic methods within a single class. (I may have left out one or two rarely
generated instructions; if so, feel free to implement them!) The only way to do output (supported
by a nasty special-case hack) is viaSystem.out.print(x) wherex is an integer or a string.
Still, this is enough to write test cases that display their results, and will run under the ordinary
JVM as well as under this interpreter. The interpreter generally issues an “unimplemented” mes-
sage about any instruction it can’t cope with.

To handle arrays, you’ll need to add cases to handle these additional instructions:ACONST NULL,
ALOAD (and its variants),ARETURN, ARRAYLENGTH, ASTORE (and its variants),IALOAD,
IASTORE, IF ACMPEQ, IF ACMPNE, IFNONNULL, IFNULL, NEWARRAY. Most of the neces-
sary code can be copied – or even reused without copying – fromthe existing support for integers.
The interesting cases areNEWARRAY,ARRAYLENGTH,IALOAD, andIASTORE. To see how these
instructions are used by real Java programs, write.java testcases and usejavap -c to examine
the corresponding bytecode. Make sure you write test cases that exercise all these instructions!

You need to arrange to “raise” the following built-in exceptions when appropriate:

NegativeArraySize
NullPointer
ArrayIndexOutOfBounds

If one of these exceptional conditions occurs, your generated code should print a line tostdout
with the message “Uncaught Exceptionname” where name is one of the above, and exit imme-
diately. Don’t try to implement real exceptions or exception handling! Make sure you write test
cases that provoke all these exceptions.

Represent ann-element array by a(n + 1)-word heap block, with the length stored in the first
word. To allocate a heap block, use thealloc function defined inbasics. Don’t worry about
deallocation or garbage collection! (If you want, it is easyto link in the Boehm conservative
garbage collector.)

How to submit your homework.

Submit the homeworkon paper at the beginning of class on the due date. You should submit:

• Your modified version ofinterp.c.

1



• Evidence that your revised interpreter works, in the form ofa set of test programs that ex-
ercise integer arrays (including exception-causing cases) together with the interpreter’s run
results.

• A brief explanation of how the interpreter passes arguments, and why this approach works.
A diagram may be quite helpful!

2


