
CS577 W’04 Lecture Notes
Lecture 4

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 2

Example: Count

Count.java:

class Count {
public static void main(String[] s) {

int i;
for (i = 0; i < 10; i++)
System.out.println(i);

}
}

% javac Count.java
% java Count
0
1
2
3
4
5
6
7
8
9

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 3

Example (cont.)

% javap -c Count
Compiled from Count.java
synchronized class Count extends java.lang.Object

/* ACC_SUPER bit set */

public static void main(java.lang.String[]);
Count();

Method void main(java.lang.String[])
0 iconst_0
1 istore_1
2 goto 15
5 getstatic #6 <Field java.io.PrintStream out>
8 iload_1
9 invokevirtual #7 <Method void println(int)>

12 iinc 1 1
15 iload_1
16 bipush 10
18 if_icmplt 5
21 return

Method Count()
0 aload_0
1 invokespecial #5 <Method java.lang.Object()>
4 return

%

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 4

Java Virtual Machine Architecture

A JVM contains the following components:

Program Counter (per thread)

Stack (per thread)

Heap (shared) – contains all objects

Method Area (shared) – byte-codes and constant pools

Native method stacks (per thread, if required)

Method code is a sequence of byte-code instructions that
implement methods (and constructors). The JVM byte-code is
stack-based; most instructions take their operands from the stack
and leave their results there.

Each class has a constant pool, which contains all the constant
data referenced by the methods of that class, including numbers,
strings, and symbolic names of other classes and members
referenced by this class.



PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 5

Stacks and Frames

There is one stack per thread. A stack consists of a sequence of
frames; frames need not be contiguous in memory. Frame size
and overall stack size may be limited by implementations.

One frame is associated with each method invocation. Each
frame contains two areas, each of statically fixed size (per
method):

• local variable storage associated with the method, and

• an operand stack for evaluating expressions within the method
and for communicating arguments and results with other
methods.

The local variable area is an array of words, addressed by word
offset from the array base. Most locals occupy one word; long
and double values occupy two consecutive words. The arguments
to a method (including this, for instance methods) always
appear as its initial local variables.

The operand stack is a stack of words. Most operands occupy
one word; long and double values occupy two consecutive
words, which must not be manipulated independently.

Frames may optionally contain additional information, e.g., for
debugging.

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 6

Types and Verification

The JVM directly supports each of the primitive Java types
(except boolean, which is mapped to int). Floating-point
arithmetic follows IEEE 754. Values of reference types
(classes,interfaces,arrays) are represented as heap pointers;
layout of these values is implementation-dependent.

Data values are not tagged with type information, but
instructions are. When executing, the JVM assumes that
instructions are always operating on values of the correct type.
The instruction set is designed to make it possible to verify that
any given method is type-correct, without executing it. The JVM
performs verification on any bytecode derived from an untrusted
source (e.g., over the network).

At any given point of execution, each entry in the local variable
area and the operand stack must have a well-defined type state;
i.e., it must be possible to deduce the type of each entry
unambiguously.

This is an unusual property for stacks! To enforce it, JVM code
must be written with care. For example, when there are two
execution paths to the same PC, they must arrive with identical
type state. So, for example, it is impossible to to use a loop to
copy an array onto the stack.

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 7

Instruction Set

Each JVM instruction consists of a one-byte op code followed
by zero or more parameters. Instructions are only byte-aligned.
Multi-byte parameters are stored in big-endian order.

The inner loop of the JVM execution engine (ignoring exceptions)
is effectively:

do {
fetch opcode;
if (parameters) fetch parameters;
execute action for opcode;

} while (more to do);

Most instructions take their operands from the top of the stack
(popping them in the process) and push their result back on the
top of the stack. A few operate directly on local variables.

Most instructions encode the type of their operands; thus, many
instructions have multiple versions distinguished by their prefix
(i,l,f,d,b,s,c,a).

The instruction set is not totally orthogonal; in particular, few
operations are provided for bytes, shorts, and chars, and integer
comparisons are much simpler than non-integer ones. In all, 201
out of 255 possible op-code values are used.

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 8

Families of instructions

Instructions group into families. Each family does the same basic
operation, but has a variety of members distinguished by operand
type and built-in arguments.

Example: load pushes the value of a local variable (specified as
a parameter) onto the stack. Variants:

Load 1-word integer from local variable n:
iload n (0 ≤ n ≤ 255)

iload_n (0 ≤ n ≤ 3)

wide iload n (0 ≤ n ≤ 65535)

Load 2-word long from local variables n and n + 1:
lload n (0 ≤ n ≤ 255)

lload_n (0 ≤ n ≤ 3)

wide lload n (0 ≤ n ≤ 65535)

Load 1-word float from local variables n:
fload n (0 ≤ n ≤ 255)

fload_n (0 ≤ n ≤ 3)

wide fload n (0 ≤ n ≤ 65535)

Load 2-word double from local variables n and n + 1:
dload n (0 ≤ n ≤ 255)

dload_n (0 ≤ n ≤ 3)

wide dload n (0 ≤ n ≤ 65535)

Load 1-word object reference from local variable n:
aload n (0 ≤ n ≤ 255)

aload_n (0 ≤ n ≤ 3)

wide aload n (0 ≤ n ≤ 65535)



PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 9

Load and Store

• load - push local variable onto stack
• store - pop top-of-stack into local variable
• push,ldc,const - push constant onto stack
• wide - modify following load or store to have wider
parameter.

Arithmetic and Logic

• add,sub,mul, div, rem, neg
• shl,shr, ushr
• or, and, xor
• iinc - increment local variable

div and rem will throw an ArithmeticException given a
zero divisor.

Conversions

• i2l,i2f,i2d,l2f,l2d,f2d.
• i2b,i2c,i2s, etc. - never raise exception.

Objects

• new – create new class instance
• newarray – creates new array
• getfield,putfield – access instance variables
• getstatic,putstatic – access class variables
• aload, astore – push, pop array elements to,from stack
• arraylength
• instanceof, checkcast – runtime narrowing checks

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 10

Stack management

• pop,dup,dup x,swap

Control transfer

• if icmpeq,if icmplt, etc. – compare ints and branch
• ifeq,iflt, etc. – compare int with zero and branch
• if acmpeq, if acmpne – compare refs and branch
• ifnull,ifnonnull – compare ref with null and branch
• cmp – compare (non-integer) values and push result code
(-1,0,1)
• tableswitch,lookupswitch – for switch statements
• goto – target is offset in method code
• jsr,ret – intended for finally
• athrow – throw explicit exception

Method invocation

• invokevirtual – for ordinary instance methods
• invokeinterface – for interface methods
• invokespecial – for constructor (<init>),private, or
superclass methods
• invokestatic – for static methods
• return

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 11

Multiple Encodings

Some common operations can be implemented by more than one
instruction, with differing levels of efficiency. For example, to
load an integer constant i, we have:

One-byte sequences for −1 ≤ i ≤ 5

iconst_m1; iconst_0; iconst_1; iconst_2;
iconst_3; iconst_4; iconst_5

Two-byte sequences for −128 ≤ i ≤ 127

bipush i

Three-byte sequences for −32768 ≤ i ≤ 32767

sipush i

Two-byte sequences for arbitrary i loaded from first 255 entries in
constant pool

ldc < i >

Three-byte sequences for arbitrary i loaded from any entry in con-
stant pool

ldc_w < i >

javac should choose best available sequence based on i.

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 12

Constant Pool

The constant pool contains the following kinds of entries:

• Utf8 – Unicode string in UTF-8 format.

• Integer,Float,Long,Double

• String – String, represented by Utf8

• Class – Fully-qualified Java class name, represented by Utf8

• NameAndType – Simple field or method name plus field or
method descriptor, each represented by Utf8.

• Fieldref, Methodref, InterfaceMethodref
– Class plus NameAndType.

Descriptors are strings that encode type information for fields or
methods in terms of base types and fully-qualified class names.
Method descriptors include the types of method parameters and
result.



PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 13

Java Class File Format

The class file format is the real standard of binary
interoperability for JVM programs. Each class file describes a
single class or interface. It is a stream of bytes, which may be
obtained from a file, over a network, or elsewhere.

The class file contains:

• Magic number and compiler version information.

• Constant pool.

• Access flags for this class.

• Name of this class, its super-class, and its direct
superinterfaces.

• Number, names, access flags, type descriptors, and values (if
constant) for its fields.

• Number, names, access flags, type descriptors, code, and
exception tables for its methods.

• Additional attribute information (e.g., for debugging) may be
attached at the class, field, or method level.

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 14

Summary

JVM Bytecode is intended to be both easy to interpret and easy
to use as compiler IR.

As an IR, it’s pretty high-level.

Explicates:

• Parameter and local variable offsets

• Temporaries (using stack)

• Order of evaluation

• Control flow within procedures

• Exceptions

But NOT:

• Object layout and field offsets

• Method calls (virtual or otherwise)

• Inheritance hierarchy

Safety issues drove design

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 15

Interpreting Bytecode

/*
* machine.c
* Extremely simplified Java
* virtual machine interpreter.
*
* Many things omitted, including:
* - synchronization for threads
* - exception handling
* - wide arguments
* - multiple types of data
*
* Derived from kaffe by Tim Wilkinson
* Copyright (c) 1996
* T. J. Wilkinson & Associates, London, UK.
*/

typedef unsigned char bytecode;
#define NOP 0
#define ACONST_NULL 1
#define ICONST_M1 2
...

const uint8 insnLen[256] =
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
...

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 16

void
virtualMachine(methods* meth, int* args, int* retval)
{
/* If these can be kept in registers then things
* will go much faster.
*/

register bytecode* code; /* code array */
register int* lcl; /* operand stack */
register int* sp; /* operand stack pointer */
register uintp pc = 0; /* current code pointer */
register uintp npc = 0; /* next code pointer * /

/* Allocate stack space and locals. */
lcl = alloca(sizeof(int) *

(meth->localsz + meth->stacksz));

/* Determine number of arguments */
nargs = meth->...;

/* Copy in the arguments */
sp = lcl;
args = &args[nargs-1];
for (i = 0; i < nargs; i++)

*(sp++) = *(nargs--);

sp = &lcl[meth->localsz + meth->stacksz];

code = (bytecode*)meth->c.bcode.code;



PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 17

/* Execute the code */
for (;;) {

pc = npc;
npc = pc + insnLen[code[pc]];
switch(code[pc]) {

NOP:
break;

ACONST_NULL:
*(--sp) = 0;
break;

...

BIPUSH:
*(--sp) = (int8)code[pc+1];
break;

...

ILOAD:
idx = (uint8)code[pc+1];
*(--sp) = *(lcl+idx)
break;

...

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 18

ISTORE:
idx = (uint8)code[pc+1];
*(lcl+idx) = *(sp++)
break;

...

DUP_X1:
sp--;
*sp = *(sp+1);
*(sp+1) = *(sp+2);
*(sp+2) = *sp;
break;

...

IADD:
*(++sp) = *sp + *(sp+1)
break;

...

IINC:
idx = (uint8)code[pc+1];
*(lcl+idx) = *(lcl+idx) + (int8)code[pc+2];
break;

...

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 19

IFEQ:
idx = (int16)((code[pc+1] << 8) | code[pc+2]);
if (*sp++ == 0) npc = pc+idx;
break;

...

GETFIELD:
idx = (uint16)((pc[1] << 8) | pc[2]);
offset = get_field_offset(idx); /* some magic */
*sp = *(*sp+offset);
break;

...

INVOKESTATIC:
idx = (uint16)((pc[1] << 8) | pc[2]);
method = get_method_info(idx); /* magic */
nargs = method->...;
virtualMachine(method, sp, retval);
sp += (nargs -1);
*sp = *retval;
break;

IRETURN:
*retval = *sp;
goto end;

...
}

}
end:

}

PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 20

Why are Interpreters Slow?

Interpreters are (relatively) simple to write, (usually) portable,
and offer fast turn-around during development.

But they are slow! Why?

Elements of cost per (virtual) instruction:

• Dispatch (fetch,code and start).

• Access arguments.

• Perform function (usually cheap!).

Target architecture very important (even if not directly exposed).

• Register-rich?

• Memory hierarchy? Costs of using underlying memory-based
stack?

• Indirect jump support?

Usual tradeoff between speed and portability.



PSU CS577 W’04 Lecture 4 c© Andrew Tolmach 2004 21

Making Dispatch Cheaper

• Threaded code: implementation of each instruction concludes
by jumping to code for next instruction (avoiding jump to case).

• Represent each instruction by address of its implementation
(avoiding jump table lookup).

• Build combined instuctions (decrease instruction count;
increase amount of useful work per decoded instruction).

• Use stack architecture: no explicit arguments, so no decoding
cost. (But may require more instructions; some recent debate on
this.)

• Ultimately: inline code sequences (avoiding dispatch
altogether) – really a (very) simple JIT compiler.

• Optimize to make better use of hardware branch prediction (see
Ertl and Gregg paper).

Making Argument Access Cheaper

• Build specialized instructions based on common literal
arguments (so no need to access arguments).

• Attempt stack caching (static or dynamic): hold top VM stack
elements in (real) registers rather than memory.

• (Note: using a register VM architecture doesn’t make it easier
to hold data in real registers!)

General Challenges: Portability, avoiding possible code
explosion.


