
CS 577 Homework 1 – Extending a bytecode interpreter – due 2pm, Wednesday, Feb 4, 2004

On the course web page, you’ll find C code for an interpreter for a small subset of JVM instruc-
tions. The Java subset supported includes integer arithmetic, static methods, and a minimal set
of output facilities. The interpreter is defined by a set of C files (interp.c, class.[ch],
basics.[ch], bytecode.h) and a makefile, which generates an executable interp.
This can be invoked just like the usual java interpreter on a single class file , but fails on programs
outside the supported subset.

Your assignment is to extend interp to deal with integer arrays. This will involve adding support
for about twelve new JVM instructions, and testing your modifications.

Details

The subset handled by the existing interpreter should be sufficient to execute simple integer pro-
grams involving static methods within a single class. (I may have left out one or two rarely
used instructions; if so, feel free to implement them!) The only way to do output (supported by a
nasty special-case hack) is via System.out.print(x) where x is an integer or a string. Still,
this is enough to write test cases that display their results, and will run under the ordinary JVM as
well as under this interpreter. The interpreter generally issues an “unimplemented” message about
any instruction it can’t cope with.

To handle arrays, you’ll need to add cases to handle these additional instructions: ACONST NULL,
ALOAD (and its variants), ARETURN, ARRAYLENGTH, ASTORE (and its variants), IALOAD,
IASTORE, IF ACMPEQ, IF ACMPNE, IFNONNULL, IFNULL, NEWARRAY. Most of the neces-
sary code can be copied – or even reused without copying – from the existing support for integers.
The interesting cases are NEWARRAY,ARRAYLENGTH,IALOAD, and IASTORE. To see how these
instructions are used by real Java programs, write .java testcases and use javap -c to examine
the corresponding bytecode. Make sure you write test cases that exercise all these instructions!

You need to arrange to “raise” the following built-in exceptions when appropriate:

NegativeArraySize
NullPointer
ArrayIndexOutOfBounds

If one of these exceptional conditions occurs, your generated code should print a line to stdout
with the message “Uncaught Exception name” where name is one of the above, and exit immedi-
ately. Don’t try to implement real exceptions or exception handling!

Represent an n-element array by a (n + 1)-word heap block, with the length stored in the first
word. To allocate a heap block, use the alloc function defined in basics. Don’t worry about
deallocation or garbage collection! (If you want, it is easy to link in the Boehm conservative
garbage collector.)

How to submit your homework.

Submit the homework on paper at the beginning of class on the due date. You should submit:

• Your modified version of interp.c.

1



• Evidence that your revised interpreter works, in the form of a set of test programs that ex-
ercise integer arrays (including exception-causing cases) together with the interpreter’s run
results.

• A brief explanation of how the interpreter passes arguments, and why this approach works.
A diagram may be quite helpful!

Extra Credit

Implement more of the JVM instructions, for example to do with fields (you’ll need to improve the
class file reader to handle these properly). Or replace the interpreter’s dispatch mechanism with
one that uses threaded code.

2


