
CS 577 Compiler Construction (Modern Language Processors) Spring 2002

Instructor:
Andrew Tolmach
120-23FAB
(503)725-5492
email: apt@cs.pdx.edu
OfficeHours:MW 4-5pm& by appt.

Coursewebpage:http://www.cs.pdx.edu/˜apt/cs577

Description

An introductorygraduate-level courseon moderntechniquesfor programminglanguagecompilationandinterpreta-
tion. We will focuson the implementationof the Java language.Topicswill include: the object-orientedruntime
model,virtual machines,nativecodegeneration,garbagecollection,optimization,andfeedback-directedcompilation.

Prerequisites

An undergraduatecompilercourse,suchasCS321/322,orequivalent;familiaritywith anobject-orientedprogramming
languagesuchasJava or C++; strongprogrammingskills.

Readings

Readingswill betakenfrom researchandsurvey papersmadeavailableon theweb. Therewill beoneor two papers
assignedperweek.

Thereis no requiredtextbook, but a numberof usefuloptional texts will be recommendedandmadeavailablefor
borrowing.

Requirements

Therewill beanumberof homework assignments,aproject,andatake-homefinal exam.Thehomework assignments
will beshortexercisesintendedto make surethatall studentsgetsomehands-onexperiencewith theinnardsof Java
compilersandtools.Thefinal examwill cover therequiredreadings.

Thecoursegradewill bedistributedasfollows:

Project 50%
Homework 20%
FinalExam 30%

Althoughit will notbeformally assessed,classparticipationis stronglyencouraged,andmayaffectborderlinegrades.

Project

Eachstudentwill selecta projectof his or herchoice,in consultationwith the instructor. Possibleprojectsinclude:
implementationwork onarealJavacompiler, prototypeimplementationsona”toy” compiler, performanceanalysisof
existing implementations,or writtensurveysof theresearchliteratureonparticulartopic. Herearesomemorespecific
examples(justasillustrations):

� Comparethequalityof generatedcodeproducedby threedifferentJVM compilers(e.g.,Sun’sHotSpot,IBM’ s
commercialcompiler, IBM’ sJikescompiler)on a largeJavabenchmarksuite.

1



� Implementanew garbagecollectionalgorithmfor theJikesRVM, andcompareits performancewith thatof the
existingcollectorson thatplatform.

� Add a peepholeoptimizerto theKaffe JIT, andseehow it affectsoverallperformance.

� Write a papersurveying theresearchliteratureon fastregisterallocationalgorithmssuitablefor usein JITs.

� Write a papercomparingtheJVM andMicrosoft’s .NET CommonLanguageRuntimeplatform.

All projects,even thosewhoseprimary product is code,must include a written summaryof results. In addition,
studentsarestronglyencouraged,thoughnot required,to presenttheir projectresultsto therestof theclassat theend
of term.

Thescopeanddifficulty of acceptableprojectscanvarywidely, to accomodatestudentswith varyinglevelsof interest
andavailabletime. Thedifficulty of theprojectwill befactoredinto thegrade:i.e.,you’ll needto do anexcellentjob
on asmallprojectin orderto getthesamegradeasfor doinga merelydecentjob on a challengingproject.

For largeprojectsinvolving substantialimplementationwork, it maybeappropriatefor studentsto work in teamsof
two; specialapproval of theinstructorwill berequired.

A largerlist of projectsuggestionsandfurtherguidelinesonprojectswill beissuedlater.

Computing Facilities

Someof the homework exercisesmay requireaccessto softwarethatwill be installedon CS departmentmachines.
Otherwise,youarefreeto work on whatevermachinesareconvenientfor youandyourproject.

Individual Work

All homework assignments,projects,andexamsmustrepresentyourown, individualwork (exceptfor approvedteam
projects). It is permissibleto discussassignmentswith otherstudents,but the solutionsmustbe recognizablyyour
own. Do not, under any circumstances, copy another person’s program or text and submit it as your own. Writing
codefor useby anotheror usinganother’s codeor text in any form (evenwith their permission)will be considered
cheating,the penaltiesfor which aredescribedin detail in the CS Department’s GraduateHandbook. In particular,
cheatingon anassignmentor examwill resultin anautomaticzerogradefor thatpieceof work.

Tentative Schedule

dates topics

Apr 1 & 3 CompilerArchitecture;ModernLanguages
Apr 8 & 10 JavaVirtual MachineandBytecode

Apr 15 & 17 JVM InterpreterImplementation
Apr 22 & 24 GarbageCollection

Apr 29& May 1 GeneratingNativeCode
May 6 & 8 MemoryOptimizations

May 13 & 15 SSA-basedOptimizations
May 20 & 22 DynamicloadingandFeedback-directedOptimization

May 29 PortableCodeVerification
Jun3 & 5 ProjectReports

Jun12 (Wed)12:30-14:20Finalexamslot (avaiablefor projectreports)

2


