
CS577Homework 1 – Counting BytecodeFrequences– due2pm, Wednesday, Apr. 17,2002

Yourassignmentis to write aprogramfreq thatrecordsandreportshow many timeseachdiffer-
entbytecodeinstructionappearsin oneor moreJVM .class files.

In moredetail,yourprogramshouldtakeoneor moreclassfile namesascommandline arguments.
For eachnamedclassfile, considerevery method. For eachmethod,considerevery instruction.
For eachinstruction,determinetheinstruction’sopcode,andincrementacountercorrespondingto
thatopcode.Whenall fileshavebeenprocessed,outputtheopcodesthathavenon-zerocounts.For
eachopcodeyou put out,print theopcodemnemonicandthecorrespondingcount.Opcodesmust
beprintedin decreasingfrequency order. If two or moreopcodesappearwith thesamefrequency,
they mustbeprintedin increasingorderof numericopcode.

For example,the outputfor the classfile example.class , availableon the courseweb page,
shouldbeasfollows:

invokevirtual 8
iconst_0 3
aload 3
aload_2 3
invokespecial 3
arraylength 3
iload 2
iload_3 2
aload_0 2
aaload 2
astore 2
istore_3 2
dup 2
return 2
new 2
ldc 1
aload_1 1
istore 1
astore_1 1
astore_2 1
iadd 1
idiv 1
iinc 1
if_icmplt 1
goto 1
getstatic 1
ifnull 1

Note that the wide modifier shouldnot be treatedas a separateinstruction; just ignore it for
countingpurposes.

1



For extracredit,allow a .jar archivefile to bespecifiedasaninput,andprocessall theclassfiles
containedin it.

Incidentally, thepoint of assigningthis problemis just to getyou messingaroundwith classfiles
andbyte codes,but it doeshave somepracticalsignificance.Java classfiles canget quite large
andthereforeexpensive to storeandslow to transmit,soit is sometimesusefulto compressthem.
Oneapproachto compressionis to usefrequency information:frequentlyusedopcodesshouldbe
encodedin fewer bits thanuncommonopcodes.If you’re interestedin this topic, checkout these
papers:

Push,CompressingJavaClassFiles, PLDI99. http://www.cs.umd.edu/˜pugh/pac k.pdf

Evans and Fraser, BytecodeCompression via Profiled Grammar Rewriting, PLDI 2001.
http://research.microsoft.com /˜cwf rase r/pap ers/ pldi2 001. pdf

Clausen,etal.,JavaBytecodeCompressionfor Low-endEmbeddedSystems, TOPLAS22(3),May
2000.http://www.daimi.au.dk/˜ups/pa pers /topl as00 .pdf

How to write the program.

Therearemany legitimatewaysto write theprogram.I’ ll describethreehere.

1. Do it by hand.

TheJVM Specificationpreciselydescribesthe layoutof .class files. You canwrite a program
(in any languagewhatever) that readsthe .class file asa bytestream,locatesall thebytecode
sequenceswithin it, andcountsopcodefrequenciesfrom them.

This approachis largely straightforward,andyou’ll learna lot aboutclassfiles, but you’ll find it
quitetedious.If youpursuethisapproach,rememberthatnoteverybytein abytecodesequenceis
anopcode;many opcodesarefollowedby oneor morebytesrepresentingarguments.

2. Useanexisting toolkit.

Thereareanumberof freely-availabletoolkits thatsupportreading,manipulating,anddumpingof
classfiles. Thesetoolkits (typically written in Java,naturally)provide APIs for parsingclassfiles
into aninternaldatastructure,andthenaccessingtheindividualmethods,instructions,etc. out of
that structure.They alsotypically containtablesmappingopcodesto their mnemonics,which is
veryhandyfor theoutputstageof yourprogram!

This is probably the approachI’d recommend,if you’re comfortable with Java or want
to becomeso, since it exposesyou to the internals of class files but does a lot of the
dirty work for you. The main challengewith it is finding your way around the rather
ill-documentedtool APIs. Of the available tools, I would suggestusing Byte Code En-
gineering Library (BCEL). This tool is available from the course web page, together
with a file example.java that illustrates its use. You can also download it directly
from http://jakarta.apache.org/bu ilds/ jaka rta-b cel/ relea se/v 5.0rc 1.
(Note: If you chooseto readthe manual,you’ll find it somewhat out of date. In particular, as
theBCEL projectrecentlymovedfrom privatehandsinto theApacheproject,all packageprefixes
de.fub.bytecode shouldbe changedto org.apache.bcel . Also, the authorseemsto
haveconfusedthewords“f aculty” and“f actorial.”)

Another possibletoolkit for the job is soot (http://www.sable.mcgill.ca/soo t/ ),

2



in particulary the coffi package. Unfortunately, not all the functionality you
need for this project is publicly exported, so you’ll need to do some source
hacking (or cut-and-paste from the source). A third possible toolkit is BITS
(http://www.cs.ucsb.edu/˜ckrint z/too ls/B IT.ta r.gz ) which I haven’t
tried out.

3. UseUnix.

A quick anddirty approachis to usethestandardSunutility javap -c to dumptheclassfiles
into a textual format, and thenuseyour favorite Unix tools (awk andsort cometo mind) to
processtext files. This is undoubtedlytheeasiestapproach,if you know thesetools. (Of course
youcanalsowrite anad-hocprogram– in any language– to processthetext files,but it’ sprobably
almostaseasyto processclassfilesdirectly.) Theonly tediouspartwill begettingthesortingorder
right within groupsof thesamefrequency. Themain disadvantageis that you won’t learnmuch
aboutclassfiles.

How to submit your homework.

Submitthehomework on paperat thebeginningof classon theduedate.You shouldsubmit:

� Your sourcefiles.

� A README and/ormakefile describinghow to compile,build, andrun your program,
unlessthis is blindingly obvious.

� Evidencethat your programworks, in the form of two programruns: (a) on the standard
example.class file; (b) on two or moreadditional.class files of your choice,pro-
cessedduringasinglerun.

3


