1. (a)

Here is the AST, with one node on each numbered line (arbitrarily numbered breadth-first).

```
1: let f
   / \ 
  / \ 
2: fun x \\ 
3: | fun y
4: x |
5: | fun z
6: | if
   / | \ 
7: y | \ 
8: z \ 
9: @ 
  / \ 
10: f \ 
11: 3
```

From this tree, we generate the following constraints:

<table>
<thead>
<tr>
<th>Node #</th>
<th>Rule</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>let</td>
<td>t2 = tf and t1 = t3</td>
</tr>
<tr>
<td>2</td>
<td>fun</td>
<td>t2 = tx -> t4</td>
</tr>
<tr>
<td>3</td>
<td>fun</td>
<td>t3 = ty -> t5</td>
</tr>
<tr>
<td>4</td>
<td>var</td>
<td>t4 = tx</td>
</tr>
<tr>
<td>5</td>
<td>fun</td>
<td>t5 = tz -> t6</td>
</tr>
<tr>
<td>6</td>
<td>if</td>
<td>t7 = Bool and t6 = t8 = t9</td>
</tr>
<tr>
<td>7</td>
<td>var</td>
<td>t7 = ty</td>
</tr>
<tr>
<td>8</td>
<td>var</td>
<td>t8 = tz</td>
</tr>
<tr>
<td>9</td>
<td>app</td>
<td>t10 = t11 -> t9</td>
</tr>
<tr>
<td>10</td>
<td>var</td>
<td>t10 = tf</td>
</tr>
<tr>
<td>11</td>
<td>int</td>
<td>t11 = Int</td>
</tr>
</tbody>
</table>

We can solve this by inspection:

First, using the identities for t2, t4, t7, t8, t10, t11 we can substitute for these variables, leading to the following modified constraints:

2' tf = tx -> tx
6' ty = Bool and t6 = tz = t9
9' tf = Int -> t9

Using t1 = t3, we can substitute for t3 to get the modified constraint

3' t1 = ty -> t5
Choosing whether to get rid of t_1 or t_3 is fairly arbitrary, but we ultimately want to know the root expression type t_1, so we keep that.

Similarly, from $t_6 = t_7 = t_9$, we can substitute for t_6 and t_9 (again fairly arbitrary, but we ultimately want to know t_7), getting

$$5' \quad t_5 = t_7 \rightarrow t_7$$
$$9'' \quad t_f = \text{Int} \rightarrow t_7$$

Equating the two expressions ($2'$ and $9''$) for t_f, we get that

$$t_x \rightarrow t_x = \text{Int} \rightarrow t_7$$

which implies that $t_x = t_7 = \text{Int}$.

Summarizing, we have

$$t_1 = \text{Bool} \rightarrow (\text{Int} \rightarrow \text{Int})$$
$$t_f = \text{Int} \rightarrow \text{Int}$$
$$t_x = \text{Int}$$
$$t_y = \text{Bool}$$
$$t_z = \text{Int}$$

(b)

The AST:

```
1: fun f
   | 2: fun g
   | 3: fun x
   | 4: @ / \ 5: f \ 6: @ / \ 7: g \ 8: x
```

The generated constraints:

<table>
<thead>
<tr>
<th>Node #</th>
<th>Rule</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fun</td>
<td>$t_1 = t_f \rightarrow t_2$</td>
</tr>
<tr>
<td>2</td>
<td>fun</td>
<td>$t_2 = t_g \rightarrow t_3$</td>
</tr>
<tr>
<td>3</td>
<td>fun</td>
<td>$t_3 = t_x \rightarrow t_4$</td>
</tr>
<tr>
<td>4</td>
<td>app</td>
<td>$t_5 = t_6 \rightarrow t_4$</td>
</tr>
</tbody>
</table>
Solution by inspection:

Using the identities from nodes 5, 6, and 7, we can rewrite the contraints for nodes 4 and 6 as

\[4' \quad tf = t6 -> t4 \]
\[6' \quad tg = tx -> t6 \]

There are no other contraints on \(tx\), \(t4\) and \(t6\), so the overall type must be parametric in (i.e. polymorphic over) these types. The type of the overall expression is

\[t1 = tf -> t2 \quad \text{(by 1)} \]
\[= tf -> (tg -> t3) \quad \text{(by 2)} \]
\[= tf -> (tg -> (tx -> t4)) \quad \text{(by 3)} \]
\[= (t6 -> t4) -> ((tx -> t6) -> (tx -> t4)) \quad \text{(by 4' and 6')} \]

Or, using more suggesting names for the polymorphic types, and the convention that \(\rightarrow\) associates to the right:

\[t1 = (tb -> tc) -> (ta -> tb) -> (ta -> tc) \]
\[tx = ta \]
\[tf = tb -> tc \]
\[tg = ta -> tb \]

which makes sense for a general-purpose “compose” function.