
Chips with Confidence:
Formal Datapath Verification

Dr John O’Leary

Principal Engineer, Intel Corporation

john.w.oleary@intel.com

Outline

• What we are verifying and why

• Verification technology

• Verification technology + X = Impact

– Specifications

– Methodology

– Reuse

2

It used to be so simple

1/21/2016 3

Now it is not so simple

1/21/2016 4

SoC methodology

5

Shared ingredients

Ex: Bay Trail SoC

6

Bay Trail: User-visible datapaths

7

Development with shared IPs

1/21/2016 8

CPU n CPU n+1

Gfx n Gfx n+1

Img n Img n+1

Wireless n Wireless n+1

Chassis n Chassis n+1

Integration
Firmware development

RTL development

0 2 3

Product

“IPs” - Ingredients

Each product

Cost of a bug vs time found

1/21/2016 9

CPU n CPU n+1

Gfx n Gfx n+1

Img n Img n+1

Wireless n Wireless n+1

Chassis n Chassis n+1

Integration
Firmware development

RTL development

0 2 3

Product

$ 103

$ 106

$ 109

Is a $1B bug possible?

• Mid-1994 – FDIV flaw detected in the
Intel Pentium® processor

• January 1995 – Intel announces a pre-
tax charge of $475 million against
earnings

• A 2003 analysis estimated that a
similar escape could cost $12B, at
then-current product volumes

10

Outline

• What we are verifying and why

• Verification technology

• Verification technology + X = Impact

– Specifications

– Methodology

– Reuse

11

Formal tools at Intel
• RTL-vs-RTL and RTL-vs-schematic equivalence verification

– Widely deployed across the industry

• RTL assertion checking
– Broad-spectrum bug detection for IP blocks, interfaces, etc

– Principally bounded model checking using SAT-solvers

• Datapath verification
– Applied to virtually all Intel CPU + Gfx datapath designs

– Similar approaches used in Centaur, IBM, AMD

• Architecture, microarchitecture (cache protocols, etc)
– TLA+/TLC, Murphi, Spin

• Software and firmware
– Static analysis widespread (e.g. Klocwork)

– Some BMC, concolic testing, theorem proving
12

A brief history of datapath verification
technology at Intel

• 1990-1994 – Intel/SRC funded academic research on BMDs,
HDDs, word-level model checking (E.M.Clarke, R.E.Bryant);
Symbolic trajectory evaluation –STE (Bryant, C.-J.H.Seger)

• Mid-1994 – FDIV flaw detected in the Pentium® processor
• Early 1995 – FV research group formed in Intel Strategic CAD

Labs (SCL). Seger VF, O’Leary, Jones, Zhao hired.
• Mid-1995 – HDD-based word-level model checking demoed
• 1995-1996 – WLMC applied in SCL to verify properties of

Pentium® Pro FPU functional blocks. Seger, Aagaard hired.
• 1997 – FIST bug detected in the Pentium® Pro processor
• 1997-1998 – Complete Pentium® Pro FPU verified against

high-level specs, with machine-checked composition
argument. Melham VF #1/N.

• 1999-present – production use of FP FV technology
• 2004 – fixpoint reached at our current tool suite

13

Intel’s Forte system

14

reFLect

STE
B

D
D

s
SAT

Libraries

G
o

al
ed

(System) Verilog RTL

Checks bounded LTL
properties of RTL

designs using
symbolic simulation

Interactive, deductive
reasoning about reFLect
programs

For writing formal specifications
and verification scripting

Arithmetic operations & theorems
Intel CPU micro-instruction specs

Debugging routines

reFLect

• Higher-order, typed, lazy, functional
• Supports development of formal specifications,

libraries, verification scripts, …

let bit_add (xv, yv) =
letrec f [] [] = [F]
/\ f (x:xv) (y:yv) =

val [cin,res] = f xv yv in
let sum = (x XOR y) XOR cin in
let cout = (x AND y) OR (x AND cin) OR (y AND cin) in
(cout : sum : res)

in
f xv yv ;

add::(bool list # bool list) -> bool list

15

reFLect and BDDs

let a = variable_vector "a[2:0]";

let b = variable_vector "b[2:0]";

a;

[a[2], a[1], a[0]]::bool list

bit_add (a, a);

[a[2], a[1], a[0], F]::bool list

bit_add (a, b);

[…,

b[1]&a[1]&b[2]&a[2] + b[0]&a[0]&a[1]&b[2]&a[2] +
b[0]&a[0]&b[1]&b[2]&a[2] + !b[0]&!b[1]&!b[2]&a[2] +
!a[0]&!b[1]&!b[2]&a[2] + ... ,

b[0]&a[0]&b[1]&a[1] + !b[0]&!b[1]&a[1] + !a[0]&!b[1]&a[1] +
!b[0]&b[1]&!a[1] + !a[0]&b[1]&!a[1] + ... ,

!b[0]&a[0] + b[0]&!a[0]]::bool list 16

Symbolic trajectory evaluation (STE)

• Compute C(p,q), S(p,q) via symbolic simulation

• Check this Boolean formula for validity:

(C(p,q) = q&p) & (S(p,q) = !q&p + q&!p)

• Built-in abstraction: X ⊑ 0, X ⊑ 1

x=p /\ y=q

[c,s] = bit_add([p], [q])
?

x=p y=q

c s

Approach

18

Bit level specs

RTL design

High level

spec

Theorem proving

STE (automatic)

RTL design

19

Booth
encoder

Partial products
generation

Wallace tree
adder network

BA C

Adder

R

i(N3(R))) = i(A) * i(B) + i(C)

– Ni(x) = “x in the i’th next cycle”

– i(x) = “bit-array x interpreted as
an integer”

– *, + are the usual integer
operations

Bit-level verifications with STE

20

Booth
encoder

Partial products
generation

Wallace tree
adder network

BA C

Adder

R

N(PP[n]) =
bit_mul(A, BE[n])

N3(R) =
bit_add(N2(P), C)

N2(P) = …

B = …

Deduction connects bit-level
operations to mathematics

21

x=A /\ y=B N(z) = bit_add(A, B)

⊢ ∀𝑎, 𝑏. i bit_add 𝑎, 𝑏 = i 𝑎 + i(𝑏)

 { property of functions }

x=A /\ y=B i(N(z)) = i(bit_add(A, B))

 { theorem about bit_add }

x=A /\ y=B i(N(z)) = i(A) + i(B)

length a = length b

Deduction ensures correctness and
completeness of decomposition

22

i(N(PP[n])) = i(A) * i(BE[n]), for each n

i(B) = i(BE[n]) * 2kn

i(N2(P)) = i(N(PP[n])) * 2kn

i(N3(R)) = i(N2(P)) + i(C)

i(N3(R)) = i(N2(P)) + i(C)

i(N3(R)) = i(N(PP[n])) * 2kn + i(C)

i(N3(R)) = (i(A) * i(BE[n])) * 2kn + i(C)

i(N3(R)) = i(A) * i(BE[n]) * 2kn + i(C)

i(N3(R)) = i(A) * i(B) + i(C)

STE

Goaled

• LCF-style interactive theorem prover, following in the
footsteps of HOL and HOL Light

• Theories of reFLect data types
– Natural numbers, integers, rationals

– Lists, pairs, reFLect ADTs

– Bitstring arithmetic

• Proof automation
– Unconditional and conditional (contextual) rewriting

– First order solver based on model elimination

– Universal linear arithmetic over N, Z, Q

Page 23

Verification technology

24

X: Arithmetic FV’s road to El Dorado

Forte + STE + HOL

Methodology

Specifications

3500+ uops
Reuse

Success!

Specifications

• Clear, abstract, unambiguous specifications are more valuable than
gold
– Even if the specification is prone to change
– Even if there is no fully-formal link to implementation

• For arithmetic datapaths we can write such specifications
• For other functionality, design intent is expressed by English text

and other artifacts:
– Tables
– Diagrams (bubble diagrams, block diagrams, message sequence

charts)
– Pseudo-code

• Unanswered questions:
– How can we improve specification quality for non-arithmetic?
– Can we practically check

• self-consistency of specifications
• Firmware/software/hardware implementations against specifications?

26

Environment specifications

• Part of every spec is an accurate-enough environment model
– For hardware blocks, this means modeling neighboring blocks
– For software routines, this means modeling the caller, subroutines,

library functions, etc
– For firmware the environment might be both software and hardware

• The effort of writing environment models limits the uptake of
formal methods

• Research needed:
– Automatic abstraction of environment models from interfaces and

code
– Synthesis of environment models from simulation traces
– Environment modeling at the hardware/firmware interface (esp

timing)

27

Methodology

28

Bit level specs

RTL

High level

spec

Circuit API

Theorem proving

STE (automatic)

API factors design-specific

information about signal

names, timing, ...

Circuit API

29

RTL

API

• The glue between bit-level specs
and RTL

• Isolates signal names, timing, …

• Developed per-design during the
initial phase of verification and
evolves with RTL changes

Exec cluster verification methodology

Exec Cluster RTL

High level
spec

Circuit API

API presents a uniform
interface to the RTL
design and supports
portability between
design projects

Bit level spec
Thousands of micro-operations

See Roope Kaivola, et al. Replacing testing with formal verification
in Intel Core™ i7 processor execution engine validation. CAV 2009.

Functionality

Environment

Implementation

Methodology enables wide
deployment

• Tens of designs in progress

• 100’s or 1000’s of operations per
design

• Live RTL, changing frequently
until a few weeks before tapeout

• Specs and scripts > 1M LOC

• “Verification engineering”

Re-use: Specs and proofs

• Products come in related families and generations
– Families: server, desktop, mobile and ultramobile parts
– Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor

• Robust reusable proofs
– Allow the cost of verification to be amortized
– Certify common functionality across generations and families

• Many Intel datapath proofs are descended (with modification) from the
Intel Pentium® 4 processor generation
– “The cost of verifying is less important than the cost of re-verifying”

• An analogous scenario in software:
– Pick a key component of Linux version N
– Develop a specification and verify the component against it
– Do it again for version N+1
– Do it again for version N+2
– Port to the equivalent BSD component

• We need to better understand how to reuse proofs and verification
results (and validation collateral in general)

32

Summary

• Datapath verification widely deployed at Intel

• Verification technology necessary, not
sufficient

• As important:

– Specifications

– Methodology

– Re-use

33

Q&A

34

Selected References

Technology
1. C.-J. H. Seger, and R. E. Bryant, Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories, Formal Methods

in System Design, Vol. 6, No. 2 (March, 1995), pp. 147-190
2. J. Yang and C.-J.H. Seger, “Introduction to Generalized Symbolic Trajectory Evaluation”, IEEE Transactions on VLSI Systems,

vol. 11, no.3 (June 2003), pp. 345-353.
3. J.W. O’Leary, J. Grundy and T.F. Melham, “A Reflective Functional Language for Hardware Design and Theorem Proving”, Fifth

Workshop on Designing Correct Circuits, Barcelona, Spain, March 2004.
4. C.-J.H. Seger, R.B. Jones, J.W. O’Leary, T. Melham, M.D. Aagaard, C. Barrett, and D. Syme, “An Industrially Effective

Environment for Formal Hardware Verification”, IEEE Transactions on Computer-Aided Design, vol. 24, no.9 (September
2005), pp. 1381-1406.

5. J. Grundy, T.F. Melham, and J.W. O’Leary, “A Reflective Functional Language for Hardware Design and Theorem Proving”,
Journal of Functional Programming, vol. 16, no. 2 (March 2006).

6. J. O’Leary, R. Kaivola, and T.F. Melham, “Relational STE and Theorem Proving for Formal Verification of Industrial Circuit
Designs”, FMCAD’13.

Methodology and applications:
1. J.W. O’Leary, X. Zhao, R. Gerth, and C.-J.H. Seger, “Formally Verifying IEEE Compliance of Floating-Point Hardware”, Intel

Technology Journal (First Quarter, 1999).
2. R. B. Jones, J.W. O’Leary, C.-J. H. Seger, M. D. Aagaard, and T. F. Melham, “Practical Formal Verification in Microprocessor

Design”, IEEE Design & Test of Computers, vol. 18, no. 4 (July/August 2001), pp. 16–25.
3. Roope Kaivola, Katherine R. Kohatsu: Proof engineering in the large: formal verification of Pentium® 4 floating-point divider.

STTT 4(3): 323-334 (2003)
4. Roope Kaivola, Naren Narasimhan: Formal Verification of the Pentium® 4 Floating-Point Multiplier. DATE 2002: 20-27.
5. Roope Kaivola: Formal Verification of Pentium® 4 Components with Symbolic Simulation and Inductive Invariants. CAV 2005:

170-184
6. Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav, Anna Slobodova,

Christopher Taylor, Vladimir Frolov, Erik Reeber and Armaghan Naik. Replacing testing with formal verification in Intel Core™
i7 processor execution engine validation. CAV 2009.

1/21/2016 35

