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Outline

• What we are verifying and why

• Verification technology

• Verification technology + X = Impact

– Specifications

– Methodology

– Reuse
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It used to be so simple
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Now it is not so simple
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SoC methodology
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Shared ingredients



Ex: Bay Trail SoC
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Bay Trail: User-visible datapaths
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Development with shared IPs
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Cost of a bug vs time found
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Is a $1B bug possible?

• Mid-1994 – FDIV flaw detected in the 
Intel Pentium® processor

• January 1995 – Intel announces a pre-
tax charge of $475 million against 
earnings

• A 2003 analysis estimated that a 
similar escape could cost $12B, at 
then-current product volumes  
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Formal tools at Intel
• RTL-vs-RTL and RTL-vs-schematic equivalence verification

– Widely deployed across the industry

• RTL assertion checking
– Broad-spectrum bug detection for IP blocks, interfaces, etc

– Principally bounded model checking using SAT-solvers

• Datapath verification
– Applied to virtually all Intel CPU + Gfx datapath designs

– Similar approaches used in Centaur, IBM, AMD

• Architecture, microarchitecture (cache protocols, etc)
– TLA+/TLC, Murphi, Spin 

• Software and firmware
– Static analysis widespread (e.g. Klocwork)

– Some BMC, concolic testing, theorem proving
12



A brief history of  datapath verification 
technology at Intel

• 1990-1994 – Intel/SRC funded academic research on BMDs, 
HDDs, word-level model checking (E.M.Clarke, R.E.Bryant); 
Symbolic trajectory evaluation –STE (Bryant, C.-J.H.Seger)

• Mid-1994 – FDIV flaw detected in the Pentium® processor
• Early 1995 – FV research group formed in Intel Strategic CAD 

Labs (SCL). Seger VF, O’Leary, Jones, Zhao hired.
• Mid-1995 – HDD-based word-level model checking demoed
• 1995-1996 – WLMC applied in SCL to verify properties of 

Pentium® Pro FPU functional blocks. Seger, Aagaard hired.
• 1997 – FIST bug detected in the Pentium® Pro processor
• 1997-1998 – Complete Pentium® Pro FPU verified against 

high-level specs, with machine-checked composition 
argument. Melham VF #1/N.

• 1999-present – production use of FP FV technology
• 2004 – fixpoint reached at our current tool suite
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Intel’s Forte system
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reFLect

• Higher-order, typed, lazy, functional
• Supports development of formal specifications, 

libraries, verification scripts, …

let bit_add (xv, yv) = 
letrec f [] [] = [F]
/\ f (x:xv) (y:yv) = 

val [cin,res] = f xv yv in
let sum = ( x XOR y ) XOR cin in
let cout = ( x AND y ) OR ( x AND cin ) OR ( y AND cin ) in
( cout : sum : res ) 

in
f xv yv ;

add::(bool list # bool list) -> bool list
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reFLect and BDDs

let a = variable_vector "a[2:0]";

let b = variable_vector "b[2:0]";

a;

[a[2], a[1], a[0]]::bool list

bit_add (a, a);

[a[2], a[1], a[0], F]::bool list

bit_add (a, b);

[…,

b[1]&a[1]&b[2]&a[2] + b[0]&a[0]&a[1]&b[2]&a[2] + 
b[0]&a[0]&b[1]&b[2]&a[2] + !b[0]&!b[1]&!b[2]&a[2] + 
!a[0]&!b[1]&!b[2]&a[2] + ... ,

b[0]&a[0]&b[1]&a[1] + !b[0]&!b[1]&a[1] + !a[0]&!b[1]&a[1] + 
!b[0]&b[1]&!a[1] + !a[0]&b[1]&!a[1] + ... ,

!b[0]&a[0] + b[0]&!a[0]]::bool list 16



Symbolic trajectory evaluation (STE)

• Compute C(p,q), S(p,q) via symbolic simulation

• Check this Boolean formula for validity:

(C(p,q) = q&p) & (S(p,q) = !q&p + q&!p)

• Built-in abstraction: X ⊑ 0, X ⊑ 1

x=p /\ y=q


[c,s] = bit_add([p], [q])
?

x=p y=q

c s



Approach
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RTL design

19

Booth 
encoder

Partial products 
generation

Wallace tree 
adder network

BA C

Adder

R

i(N3(R))) = i(A) * i(B) + i(C)

– Ni(x) = “x in the i’th next cycle”

– i(x) = “bit-array x interpreted as 
an integer”

– *, + are the usual integer 
operations



Bit-level verifications with STE
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N(PP[n]) =
bit_mul(A, BE[n])
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bit_add(N2(P), C)

N2(P) = …

B = …



Deduction connects bit-level 
operations to mathematics
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x=A /\ y=B N(z) = bit_add(A, B)

⊢ ∀𝑎, 𝑏. i bit_add 𝑎, 𝑏 = i 𝑎 + i(𝑏)

 { property of functions }

x=A /\ y=B i(N(z)) = i(bit_add(A, B))

 { theorem about bit_add }

x=A /\ y=B i(N(z)) = i(A) + i(B)

length a = length b



Deduction ensures correctness and 
completeness of decomposition
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i(N(PP[n])) = i(A) * i(BE[n]), for each n

i(B) =  i(BE[n]) * 2kn

i(N2(P)) =  i(N(PP[n])) * 2kn

i(N3(R)) = i(N2(P)) + i(C)

i(N3(R)) = i(N2(P)) + i(C)

i(N3(R)) =  i(N(PP[n])) * 2kn + i(C)

i(N3(R)) =  (i(A) * i(BE[n])) * 2kn + i(C)

i(N3(R)) = i(A) *  i(BE[n]) * 2kn + i(C)

i(N3(R)) = i(A) * i(B) + i(C)

STE



Goaled

• LCF-style interactive theorem prover, following in the 
footsteps of HOL and HOL Light

• Theories of reFLect data types
– Natural numbers, integers, rationals

– Lists, pairs, reFLect ADTs

– Bitstring arithmetic

• Proof automation
– Unconditional and conditional (contextual) rewriting

– First order solver based on model elimination

– Universal linear arithmetic over N, Z, Q
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Verification technology
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X: Arithmetic FV’s road to El Dorado

Forte + STE + HOL

Methodology

Specifications

3500+ uops
Reuse

Success!



Specifications

• Clear, abstract, unambiguous specifications are more valuable than 
gold
– Even if the specification is prone to change
– Even if there is no fully-formal link to implementation

• For arithmetic datapaths we can write such specifications
• For other functionality, design intent is expressed by English text 

and other artifacts:
– Tables
– Diagrams (bubble diagrams, block diagrams, message sequence 

charts)
– Pseudo-code

• Unanswered questions:
– How can we improve specification quality for non-arithmetic?
– Can we practically check 

• self-consistency of specifications
• Firmware/software/hardware implementations against specifications?
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Environment specifications

• Part of every spec is an accurate-enough environment model
– For hardware blocks, this means modeling neighboring blocks
– For software routines, this means modeling the caller, subroutines, 

library functions, etc
– For firmware the environment might  be both software and hardware

• The effort of writing environment models limits the uptake of 
formal methods

• Research needed:
– Automatic abstraction of environment models from interfaces and 

code
– Synthesis of environment models from simulation traces
– Environment modeling at the hardware/firmware interface (esp

timing)
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Methodology
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Bit level specs

RTL

High level 

spec

Circuit API

Theorem proving

STE (automatic)

API factors design-specific

information about signal 

names, timing, ...



Circuit API
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RTL

API

• The glue between bit-level specs 
and RTL

• Isolates signal names, timing, …

• Developed per-design during the 
initial phase of verification and 
evolves with RTL changes



Exec cluster verification methodology

Exec Cluster RTL

High level 
spec

Circuit API

API presents a uniform 
interface to the RTL 
design and supports 
portability between 
design projects

Bit level spec
Thousands of micro-operations

See Roope Kaivola, et al. Replacing testing with formal verification 
in Intel Core™ i7 processor execution engine validation. CAV 2009.

Functionality

Environment

Implementation



Methodology enables wide 
deployment

• Tens of designs in progress

• 100’s or 1000’s of operations per 
design

• Live RTL, changing frequently 
until a few weeks before tapeout

• Specs and scripts > 1M LOC

• “Verification engineering”



Re-use: Specs and proofs 

• Products come in related families and generations
– Families: server, desktop, mobile and ultramobile parts
– Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor

• Robust reusable proofs
– Allow the cost of verification to be amortized
– Certify common functionality across generations and families

• Many Intel datapath proofs are descended (with modification) from the 
Intel Pentium® 4 processor generation
– “The cost of verifying is less important than the cost of re-verifying”

• An analogous scenario in software:
– Pick a key component of Linux version N
– Develop a specification and verify the component against it
– Do it again for version N+1
– Do it again for version N+2
– Port to the equivalent BSD component

• We need to better understand how to reuse proofs  and verification 
results (and validation collateral in general)
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Summary

• Datapath verification widely deployed at Intel

• Verification technology necessary, not 
sufficient

• As important:

– Specifications

– Methodology

– Re-use
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Q&A
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