
CS410P/510 Programming Language Compilation Practice Midterm

Name:

Instructions

• This exam has 6 questions, for a total of 80 points.

• You may spend up to 1 hour, 50 minutes (110 minutes) on the exam.

• The exam is closed-book, closed-notes, except that one 8.5”x11” single-sided sheet of
handwritten notes is permitted.

• No computing devices (laptops, tablets, cell phones, etc.) may be used.

Concrete syntax for all the intermediate languages mentioned in the exam
can be found on the last two pages.

CS410P/510 Programming Language Compilation
Practice Midterm Exam

1. [10 points] Compiler Structure

The compiler for the language with booleans and conditionals in Chapter 5 involves
multiple intermediate and target languages, namely: LIf (the source language for the
whole compiler), Lmon

if , CIf , x86VarIf , and x86If (the target language for the whole compiler).

The compiler involves multiple passes, which are listed here (with abbreviations) in no
particular order:

prelude_and_conclusion (P&C)

shrink (S)

select_instructions (SE)

explicate_control (EC)

remove_complex_operands (RCO)

patch_instructions (PI)

assign_homes (AH)

Draw a diagram that shows the order in which the passes actually execute, and indicates
which language is the source and target of each pass. (Use the abbreviations to save
writing.)

Page 2 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

2. [15 points] Compile the following LIf program to an equivalent program in the Lmon
if

language.

a = input_int()
b = 3 + ((- a) - 7)
c = 42 if (b < 10) else (a + input_int())
print(c)

Page 3 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

3. [15 points] Given the following code for the body of an x86VarIf program written using
symbolic variable names, write down the full assembly code for the x86If program ob-
tained by assigning distinct %rbp-relative stack locations (not registers!) to the variables
x, t0, and t1, in the style of Chapter 2. Your answer should be in the form of a single
main function definition, given in the syntax of x86If , i.e. the usual assembler syntax of
.s files. Be sure to give the complete function code, including entry and exit sequences,
and consisting entirely of legal instructions.

callq _read_int
movq %rax, x
movq $-7, t0
movq t0, t1
addq x, t1
movq t1, %rdi
callq _print_int

Page 4 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

4. [10 points] Recall that numeric comparisons on the X86 are perfomed by setting the
condition codes (typically using a cmpq instruction) and then testing them using one of
the setcc or jcc instructions. Our compiler finds it useful to generate both setcc and
jcc instructions in different situations.

Illustrate why, by giving a short LIf source program fragment and its translation into
x86VarIf , where the translated program uses both kinds of cc-testing instructions.

Page 5 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

5. [15 points] For the following CIf program, fill in the live-after and live-before sets at each
specified point in the program. (Note: although in our compiler we compute liveness
information for X86 code, exactly the same ideas can be used to compute liveness for CIf
code.)

live-before =
start:
a = 1

live-after =
b = 2

live-after =
t3 = input_int()

live-after =
if t3 == 0: goto block1
else: goto block2

live-before =
block1:
t2 = a

live-after =
t3 = -t2

live-after =
goto block3

live-before =
block2:
t3 = b

live-after =
t4 = 20

live-after =

goto block3

live-before =
block3:
x = t3

live-after =
t5 = x + 10

live-after =
print(t5)

live-after =
return 0

Page 6 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

Page 7 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

6. [15 points] Consider the following results from liveness analysis on a x86Var program
using symbolic variable names, where the live-after set is listed next to each instruction.

start:
callq read_int ; %rax
movq %rax, x ; x
movq $1, y ; x,y
movq $2, z ; x,y,z
movq y, w ; x,w,z
addq $2, w ; x,w,z
movq z, t ; x,w,t
addq w, t ; t,x
movq t, %rax ; %rax,x
addq x, %rax ; %rax
jmp conclusion

(a) Draw the interference graph for the variables x,y,z,w,t. (You can ignore %rax.)

(b) What is the minimum number of locations (registers or stack slots) needed to hold
the five variables in this code?

Page 8 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

[This page deliberately left blank.]

Page 9 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

Concrete Syntax of Languages

LIf

cmp ::= == | != | < | <= | > | >=

exp ::= int | bool | var
| input int() | - exp | not exp | exp + exp | exp - exp
| exp and exp | exp or exp | (exp)
| exp cmp exp | exp if exp else exp

stmt ::= print(exp) | exp | var = exp | if exp: stmt+ else: stmt+

LIf ::= stmt∗

Lmon
if

atm ::= int | bool | var
cmp ::= == | != | < | <= | > | >=

exp ::= atm | input int() | - atm | not atm | atm + atm | atm - atm
| atm cmp atm | exp if exp else exp | {stmt∗ produce(exp)}

stmt ::= print(atm) | exp | var = exp | if exp: stmt+ else: stmt+

Lmon
if ::= stmt∗

Note: the concrete expression {stmt∗ produce(exp)} corresponds to the AST form Begin(stmt∗, exp).

CIf

atm ::= int | bool | var
cmp ::= == | != | < | <= | > | >=

exp ::= atm | input int() | - atm | not atm | atm + atm | atm - atm
| atm cmp atm

stmt ::= print(atm) | exp | var = exp
tail ::= return exp | goto label | if atm cmp atm: goto label else: goto label
CIf ::= (label: stmt∗ tail) . . .

Page 10 of 11

CS410P/510 Programming Language Compilation
Practice Midterm Exam

x86VarIf

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg) | var
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr

x86VarIf ::= .globl main

main: instr . . .

Note: this is the same as x86If , below, except that var is allowed as an arg .

x86If

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg)
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr

x86If ::= .globl main

main: instr . . .

Page 11 of 11

