
CS410P/510 Programming Language
Compilation
Winter 2024

Lecture on Optimization

1

CODE OPTIMIZATION

• Really “improvement” rather than “optimization;” results are seldom
optimal.

• Remove inefficiencies in user code and (at least as importantly) in
compiler-generated code.

• Can be applied at several phases in pipeline, chiefly on intermediate or
assembly code.

• Goal is usually to decrease execution time; sometimes it is important to
decrease code size.

• Can operate at several levels of granularity:

- “Local” : within basic blocks

- “Global” : entire functions

- “Interprocedural” : entire programs (maybe even multiple source files)

• Most of a serious modern compiler is devoted to optimization.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 2

SOME IMPORTANT CLASSIC OPTIMIZATIONS

• Constant folding (partial evaluation)

• Constant propagation

• Dead code elimination

• Useless code elimination

• Common subexpression elimination (redundancy elimination)

• Invariant hoisting from loops

• Strength reduction (replacing an expensive operation with an equivalent
cheaper one)

• Function inlining

We hope for modest constant factor improvements in running time and
code space.

Asympototic improvements generally require a different algorithm, which
the compiler is very unlikely to discover!

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 3

KEY CONSIDERATIONS FOR ANY OPTIMIZATION

• Safety: Transformation must maintain observable behavior of program
(on all inputs).

• Profitability: Transformation should speed up execution (or shrink code
size, or both).

• Opportunity: We need an efficient way to find out where we can apply
transformation safely and profitably.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 4

THEORETICAL UNDERPINNINGS

• Mostly about finding static approximations to dynamic behavior.

• But a very ad hoc subject, with relatively few unifying principles!

Some useful tools:

• Control-flow graphs

• Data-flow analysis

• Pointer analysis

• Dominators

• Static single assignment

• Polyhedral analysis

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 5

OPPORTUNITIES FOR OPTIMIZATION

• Compensating for abstractions in source language code, e.g.

- Array access requires non-trivial address calculations

- Object-oriented languages call many small methods, using expensive
dynamic dispatch

• Utilizing resources in target code, e.g.

- Certain processors have specialized instructions for common patterns

- Co-processors (GPUs, etc.) – although today few compilers use these
automatically

(Note: modern CPUs do lots of dynamic optimization in hardware, which
may lessen the importance/impact of compiler optimization.)

• Optimization opportunities are cumulative: doing one transformation
often enables others.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 6

WHERE ARE OPTIMIZATIONS DONE?

• On assembly code

- particularly useful when optimization depends on details of target
machine architecture

• At source level, by rewriting the program.

- e.g., like our LInt PartialEvaluation pass

- can be limited by expressiveness of source language

• On an intermediate language, typically with explicit control flow
structure and unlimited registers and memory

- e.g. our CIf
- portable across different target (and source!) languages

- often the “sweet spot” for general-purpose optimizations

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 7

LOCAL OPTIMIZATIONS

These work within a single basic block, so control flow is trivial.

Some simple examples in CIf :

• Constant folding; static conditional evaluation

L1: a = 2 + 3 L1: a = 5

if a > 4 goto L2 ⇒ goto L2

else goto L3

• Together with constant propagation

L1: a = -9 ⇒ L1: a = -9

b = 10 + a b = 1

c = c + b c = c + 1

(Subsequent transformations might get rid of the assignment to b.)

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 8

“PEEPHOLE” OPTIMIZATIONS

Local optimizations performed on machine code using minimal context
information, e.g.

• Algebraic Simplification

addq $0, %rsp ⇒ (nothing)

• Redundant load or store removal

movq -20(%rbp), %r10 ⇒ movq -20(%rbp), %r10

movq %r10, -20(%rbp)

• Strength Reduction

imulq $8, %r10 ⇒ salq $3, %r10

• Use of machine idioms

imulq $8, %r10 ⇒ leaq 20(%r11,%r10,8), %r10

addq %r11, %r10

addq $20,%r10

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 9

WHOLE-PROCEDURE OPTIMIZATIONS

• Consider entire control-flow graph (CFG) of procedure instead of just
one basic block at a time.

• Typically requires deeper analysis of code (e.g. data-flow analysis).

• Example: Reorder blocks; remove jumps to jumps; remove unreachable
code

L1: cmpx x,2 ⇒ L1: cmpx x,2

jl L2 jl L4

jmp L3 L3: addx $1,x
L2: jmp L4 jmp L1

jmp L1 L4: ...

L3: addx $1,x
jmp L1

L4: ...

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 10

MORE WHOLE-PROCEDURE OPTIMIZATIONS

• Example: Remove useless code (e.g. stores to non-live variables)

L1: x = x + 1 ⇒ L1: y = z + w

y = z + w x = y + z

x = y + z if x < 10 goto L1;

if x < 10 goto L1; else goto L2

else goto L2

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 11

LOOP OPTIMIZATIONS

Loop optimizations are most important whole-procedure
transformations.

• Code motion: “hoist” expensive calculations above the loop.

• Use induction variables and reduction in strength. Change only one
index variable on each loop iteration, and choose one that’s cheap to
change.

• Partially unrolling the loop can reduce per-iteration overheads and
improve instruction scheduling.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 12

LOOP OPTIMIZATION EXAMPLE

Illustrating hoisting and strength reduction.

x = 0

while x < 1000:

a[x] = a[y]

x = x + 1

L0: x = 0

L1: if x < 1000 goto L2 ⇒ L0: t = a

else goto L3 j = y * 8

L2: j = y * 8 u = a + j

u = a + j w = a + 8000

v = *u L1: if t < w goto L2

i = x * 8 else goto L3

t = a + i L2: v = *u

*t = v *t = v

x = x + 1 t = t + 8

goto L1 goto L1

L3: ... L3: ...

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 13

INTERPROCEDURAL OPTIMIZATION

Procedure inlining is most important.

• Replace a procedure call with a copy of the procedure body (including
initial assignments to parameters).

• Applicable when body is not too big, or is called only once.

Benefits:

• Saves overhead of procedure entry/exit, argument passing, etc.

• Permits other optimizations to work over procedure boundaries.

• Particularly useful for languages that encourage use of small
procedures (e.g. OO state get/set methods).

Cost:

• Risk of “code explosion.”

• Doesn’t work when callee is not statically known (e.g. OO dynamic
dispatch or FP first-class calls).

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 14

COMPILER CORRECTNESS

Optimizing compilers are complex artifacts, and they have bugs!

Some promising approaches to enhancing compiler correctness:

• Randomized testing (can find dark corners that human-written tests
may miss)

• Formal verification of correctness using machine-assisted theorem
proving

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 15

REDUNDANCY ELIMINATION

One important optimization opportunity is removing repeated calculations
of the same value.

For remainder of lecture, we consider how this can be done at different
levels of granularity.

Consider this CIf sequence:

g = x + y

h = u - v

w = g + h

u = x + y # redundant calculation

x = u - v # not redundant (why not?)

Value numbering is an approach to finding and eliminating common
subexpressions

• Process each instruction in order.

• Maintain a mapping from identifiers (e.g. x) and arithmetic expressions
(e.g. (#1 + #2)) to value numbers.

• If an entry in the mapping already exists, rewrite the instruction to use it.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 16

LOCAL VALUE NUMBERING

Initial code Final code Mapping entries

g = x + y g = x + y x -> #1 #1:x

y -> #2 #2:y

(#1 + #2) -> #3

g -> #3 #3:g

h = u - v h = u - v u -> #4 #4:u

v -> #5 #5:v

(#4 - #5) -> #6

h -> #6 #6:h

w = g + h w = g + h (#3 + #6) -> #7

w -> #7 #7:w

u = x + y u = g u -> #3

x = u - v x = u - v (#3 - #5) -> #8

x -> #8 #8:x

• Now can potentially replace uses of u by g and eliminate the
assignment u = g.

• This scheme works better when all names are assigned just once.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 17

SUPERLOCAL VALUE NUMBERING

Can do better by analyzing over paths in extended basic blocks.

(An EBB has one entry, but can have multiple exits. It forms a subtree of
the CFG; all the blocks in the EBB except perhaps the root have a unique
predecessor inside the EBB).

w1 <! a1 * b1

x2 <! a1 ! b1 z1 <! a1 + b1

z2 <! a1 * b1

x1 <! a1 + b1
y1 <! a1 ! b1

P ?

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 18

DOMINATORS

We still aren’t taking full advantage of facts of the form “this instruction is
certain to be executed before this other instruction.” Capture this idea
using dominators.

To define dominators, assume that CFG has a distinguished start node S,
and has no disconnected subgraphs (nodes unreachable from S).

Then we say node d dominates node n if all paths from S to n include d.

(In particular, every node dominates itself.)

Fact: d dominates n iff d = n or d dominates all predecessors of n.

So can define the set D(n) of nodes that dominate n as follows:

• D(S) = {S}

• D(n) = {n} ∪ (
⋂

p∈pred(n)D(p))

where pred(n) = set of predecessors of n in CFG.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 19

DOMINATOR TREE

The immediate dominator of n, idom(n), is defined thus:

• idom(n) dominates n

• idom(n) is not n

• idom(n) does not dominate any other dominator of n (except n itself)

Fact: every node (except S) has a unique immediate dominator

Hence the immediate dominator relation defined a tree, called the
dominator tree, whose nodes are the nodes of the CFG, where the
parent of a node is its immediate dominator.

Have D(n) = {n} ∪ (ancestors of n in dominator tree)

(Nontrivial) Fact: The dominator tree of a CFG can be computed in
almost-linear time.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 20

DOMINATOR TREE EXAMPLE

7

ENTER

k <! 0
i <! 1
j <! 2

i <= N?
k <! 1

i <! i+1
k > 0?

i <! i + 1i <! 0

EXIT

0

1

3 4

5 6

7

2

0
1
2

3 4
5 6

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 21

DOMINATOR-BASED VALUE NUMBERING

Do analysis over paths in dominator tree.

w1 <! a1 * b1

x2 <! a1 ! b1 z1 <! a1 + b1

z2 <! a1 * b1

x1 <! a1 + b1
y1 <! a1 ! b1

P ?

1

2 3

4

1

2 3 4

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 22

AVAILABLE EXPRESSIONS

Even with dominator-based VN, we cannot find redundant expressions
computed on different paths.

An alternative approach is to compute available expressions.

An expression e is available at node n if on every path from S to n, e is
evaluated and none of its constituent variables is redefined between that
evaluation and n.

If an expression is available at a node where it is being recomputed, it is
possible to replace the recomputation by a variable representing the
result of the previous computation.

This is a classic data flow analysis problem, specified thus:

gen(t <- b bop c) = {b bop c} kill(t <-) =
⋃

∀u,bop{t bop u, u bop t}
gen(other instruction) = ∅ kill(other instruction) = ∅
in(n) =

⋂
p∈pred(n)out(p)

out(n) = (in(n) ∪ gen(n))− kill(n)

Here we want in(n), the set of expressions available on entry to n.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 23

AVAILABLE EXPRESSIONS EXAMPLE

gen[4] = {a*b,a/b}

P ?
2 3

4

1
x1 <! a + b
y1 <! a ! b
w1 <! a * b

x2 <! a ! b
r1<! a/b

z1 <! a + b
s1 <! a/b

z2 <! a * b
w2<! a/b

gen[2] = {a!b,a/b}

gen[1] = {a+b,a!b,a*b}

gen[3] = {a+b,a/b}

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 24

SOLUTIONS

This is a forwards data flow problem, with initial approximation

in[1] = ∅
in[2] = in[3] = in[4] = {a+b,a-b,a*b,a/b}

Here’s the (unique) solution to the data flow equations.

in[1] = {} out[1] = {a+b,a-b,a*b}

in[2] = {a+b,a-b,a*b} out[2] = {a+b,a-b,a*b,a/b}

in[3] = {a+b,a-b,a*b} out[3] = {a+b,a-b,a*b,a/b}

in[4] = {a+b,a-b,a*b,a/b} out[4] = {a+b,a-b,a*b,a/b}

So nothing needs to be recomputed in nodes 2, 3, or 4.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 25

FOR FURTHER INFORMATION

• Keith Cooper and Linda Torczon, Engineering a Compiler, 2nd ed.,
Morgan Kaufmann, 2012, has thorough and practical coverage of many
standard optimizations. (The slides on redundancy analysis are inspired
by their treatment.)

• Steve Muchnick, Advanced Compiler Design & Implmentation, Morgan
Kaufmann, 1997, is the most encyclopedic treatment of the optimization
ecosystem.

• Anders Møller and Michael Schwartzbach, Static Program Analysis,
on-line at https://cs.au.dk/~amoeller/spa/spa.pdf, 2020, treats the
theoretical underpinnnings of the analyses that drive optimization.

• Xavier Leroy, “Formal verification of a realistic compiler,”Commun. ACM,
52(7), pp. 107–115, 2009, describes the CompCert verified C compiler.

PSU CS410P/510 WINTER’24 LECTURE ON OPTIMIZATION © 1992–2024 ANDREW TOLMACH 26

