CS410P/510 Programming Language Compilation Winter 2024 Lecture on Optimization

# CODE OPTIMIZATION

• Really "improvement" rather than "optimization;" results are seldom optimal.

• Remove inefficiencies in user code and (at least as importantly) in compiler-generated code.

• Can be applied at several phases in pipeline, chiefly on intermediate or assembly code.

• Goal is usually to decrease execution time; sometimes it is important to decrease code size.

- Can operate at several levels of granularity:
- "Local" : within basic blocks
- "Global" : entire functions
- "Interprocedural" : entire programs (maybe even multiple source files)
- **Most** of a serious modern compiler is devoted to optimization.

# SOME IMPORTANT CLASSIC OPTIMIZATIONS

- Constant folding (partial evaluation)
- Constant propagation
- Dead code elimination
- Useless code elimination
- Common subexpression elimination (redundancy elimination)
- Invariant hoisting from loops
- Strength reduction (replacing an expensive operation with an equivalent cheaper one)
- Function inlining

We hope for modest constant factor improvements in running time and code space.

Asympototic improvements generally require a different algorithm, which the compiler is very unlikely to discover!

# KEY CONSIDERATIONS FOR ANY OPTIMIZATION

• Safety: Transformation **must** maintain observable behavior of program (on all inputs).

• Profitability: Transformation **should** speed up execution (or shrink code size, or both).

• Opportunity: We need an efficient way to find out where we can apply transformation safely and profitably.

## **THEORETICAL UNDERPINNINGS**

- Mostly about finding static **approximations** to dynamic behavior.
- But a very *ad hoc* subject, with relatively few unifying principles!

Some useful tools:

- Control-flow graphs
- Data-flow analysis
- Pointer analysis
- Dominators
- Static single assignment
- Polyhedral analysis

### **OPPORTUNITIES FOR OPTIMIZATION**

- Compensating for abstractions in source language code, e.g.
- Array access requires non-trivial address calculations
- Object-oriented languages call many small methods, using expensive dynamic dispatch
- Utilizing resources in target code, e.g.
- Certain processors have specialized instructions for common patterns
- Co-processors (GPUs, etc.) although today few compilers use these automatically

(Note: modern CPUs do lots of dynamic optimization in hardware, which may lessen the importance/impact of compiler optimization.)

• Optimization opportunities are **cumulative**: doing one transformation often enables others.

# WHERE ARE OPTIMIZATIONS DONE?

• On assembly code

- particularly useful when optimization depends on details of target machine architecture

- At source level, by rewriting the program.
- e.g., like our  $\mathcal{L}_{\mathsf{Int}}$  PartialEvaluation pass
- can be limited by expressiveness of source language
- On an intermediate language, typically with explicit control flow structure and unlimited registers and memory
- e.g. our  $\mathcal{C}_{\text{lf}}$
- portable across different target (and source!) languages
- often the "sweet spot" for general-purpose optimizations

# LOCAL OPTIMIZATIONS

These work within a single basic block, so control flow is trivial. Some simple examples in  $C_{lf}$ :

• Constant folding; static conditional evaluation

L1: a = 2 + 3if a > 4 goto L2  $\Rightarrow$  goto L2 else goto L3

• Together with constant propagation

L1: a = -9 b = 10 + a c = c + b  $\Rightarrow$ L1: a = -9 b = 1c = c + 1

(Subsequent transformations might get rid of the assignment to b.)

# "PEEPHOLE" OPTIMIZATIONS

Local optimizations performed on machine code using minimal context information, e.g.

- Algebraic Simplification
- addq \$0, %rsp (nothing)  $\Rightarrow$  Redundant load or store removal movq -20(%rbp), %r10 movq -20(%rbp), %r10  $\Rightarrow$ movq %r10, -20(%rbp) Strength Reduction imulq \$8, %r10 salq \$3, %r10  $\Rightarrow$  Use of machine idioms leaq 20(%r11,%r10,8), %r10 imulq \$8, %r10  $\Rightarrow$ addq %r11, %r10 addq \$20,%r10

# WHOLE-PROCEDURE OPTIMIZATIONS

• Consider entire control-flow graph (CFG) of procedure instead of just one basic block at a time.

- Typically requires deeper analysis of code (e.g. data-flow analysis).
- Example: Reorder blocks; remove jumps to jumps; remove unreachable code

| L1: | cmpx x,2   | $\Rightarrow$ | L1: | cmpx x,2   |
|-----|------------|---------------|-----|------------|
|     | jl L2      |               |     | jl L4      |
|     | jmp L3     |               | L3: | addx \$1,x |
| L2: | jmp L4     |               |     | jmp L1     |
|     | jmp L1     |               | L4: | •••        |
| L3: | addx \$1,x |               |     |            |
|     | jmp L1     |               |     |            |
| L4: | • • •      |               |     |            |

## **MORE WHOLE-PROCEDURE OPTIMIZATIONS**

• Example: Remove useless code (e.g. stores to non-live variables)

L1: x = x + 1  $\Rightarrow$  L1: y = z + w y = z + w x = y + z x = y + z if x < 10 goto L1; else goto L2  $\Rightarrow$  L1: y = z + w x = y + z f x < 10 goto L1;  $\Rightarrow$  else goto L2

# LOOP OPTIMIZATIONS

**Loop optimizations** are most important whole-procedure transformations.

• Code motion: "hoist" expensive calculations above the loop.

• Use **induction variables** and reduction in strength. Change only one index variable on each loop iteration, and choose one that's cheap to change.

• Partially **unrolling** the loop can reduce per-iteration overheads and improve instruction scheduling.

LOOP OPTIMIZATION EXAMPLE

Illustrating hoisting and strength reduction.

```
x = 0
  while x < 1000:
    a[x] = a[y]
    x = x + 1
I_{0}: x = 0
L1: if x < 1000 goto L2
                        \Rightarrow L0: t = a
                                          j = y * 8
    else goto L3
L2: j = y * 8
                                          u = a + j
    u = a + j
                                          w = a + 8000
                                      L1: if t < w goto L2
    v = *u
    i = x * 8
                                          else goto L3
                                      L2: v = *u
   t = a + i
    *t = v
                                          *t = v
    x = x + 1
                                          t = t + 8
    goto L1
                                          goto L1
L3: ...
                                      L3: ...
```

#### **INTERPROCEDURAL OPTIMIZATION**

Procedure inlining is most important.

- Replace a procedure call with a copy of the procedure body (including initial assignments to parameters).
- Applicable when body is not too big, or is called only once.
   Benefits:
- Saves overhead of procedure entry/exit, argument passing, etc.
- Permits other optimizations to work over procedure boundaries.
- Particularly useful for languages that encourage use of small procedures (e.g. OO state get/set methods).

Cost:

- Risk of "code explosion."
- Doesn't work when callee is not statically known (e.g. OO dynamic dispatch or FP first-class calls).

# **COMPILER CORRECTNESS**

Optimizing compilers are complex artifacts, and they have bugs!

Some promising approaches to enhancing compiler correctness:

- Randomized testing (can find dark corners that human-written tests may miss)
- Formal verification of correctness using machine-assisted theorem proving

# **REDUNDANCY ELIMINATION**

One important optimization opportunity is removing repeated calculations of the same value.

For remainder of lecture, we consider how this can be done at different levels of granularity.

Consider this  $C_{If}$  sequence:

| g | = | х | + | у |                                       |
|---|---|---|---|---|---------------------------------------|
| h | = | u | - | v |                                       |
| W | = | g | + | h |                                       |
| u | = | x | + | у | <pre># redundant calculation</pre>    |
| x | = | u | - | v | <pre># not redundant (why not?)</pre> |

Value numbering is an approach to finding and eliminating common subexpressions

- Process each instruction in order.
- Maintain a mapping from identifiers (e.g. x) and arithmetic expressions (e.g. (#1 + #2)) to **value numbers**.
- If an entry in the mapping already exists, rewrite the instruction to use it.

#### LOCAL VALUE NUMBERING

| Initial code | Final code | Mapping entries |              |
|--------------|------------|-----------------|--------------|
| g = x + y    | g = x + y  | x -> #1         | #1:x         |
|              |            | y -> #2         | #2:y         |
|              |            | (#1 + #2) -> #3 |              |
|              |            | g -> #3         | #3:g         |
| h = u - v    | h = u - v  | u -> #4         | #4:u         |
|              |            | v -> #5         | #5:v         |
|              |            | (#4 - #5) -> #6 |              |
|              |            | h -> #6         | #6:h         |
| w = g + h    | w = g + h  | (#3 + #6) -> #7 |              |
|              |            | w -> #7         | #7:w         |
| u = x + y    | u = g      | u -> #3         |              |
| x = u - v    | x = u - v  | (#3 - #5) -> #8 |              |
|              |            | x -> #8         | <b>#</b> 8:x |

- Now can potentially replace uses of u by g and eliminate the assignment u = g.
- This scheme works better when all names are assigned just once.

# SUPERLOCAL VALUE NUMBERING

Can do better by analyzing over paths in **extended** basic blocks.

(An EBB has one entry, but can have multiple exits. It forms a subtree of the CFG; all the blocks in the EBB except perhaps the root have a unique predecessor inside the EBB).



# DOMINATORS

We still aren't taking full advantage of facts of the form "this instruction is certain to be executed before this other instruction." Capture this idea using **dominators**.

To define dominators, assume that CFG has a distinguished start node S, and has no disconnected subgraphs (nodes unreachable from S).

Then we say node d **dominates** node n if **all** paths from S to n include d.

(In particular, every node dominates itself.)

Fact: *d* dominates *n* iff d = n or *d* dominates all predecessors of *n*.

So can define the set D(n) of nodes that dominate n as follows:

- $\bullet \ D(S) = \{S\}$
- $D(n) = \{n\} \cup (\bigcap_{p \in pred(n)} D(p))$

where pred(n) = set of predecessors of n in CFG.

# **DOMINATOR TREE**

The **immediate dominator** of n, idom(n), is defined thus:

- idom(n) dominates n
- idom(n) is not n
- idom(n) does not dominate any other dominator of n (except n itself)

Fact: every node (except S) has a unique immediate dominator

Hence the immediate dominator relation defined a tree, called the **dominator tree**, whose nodes are the nodes of the CFG, where the parent of a node is its immediate dominator.

Have  $D(n) = \{n\} \cup (\text{ancestors of } n \text{ in dominator tree})$ 

(Nontrivial) Fact: The dominator tree of a CFG can be computed in almost-linear time.





Do analysis over paths in dominator tree.



### **AVAILABLE EXPRESSIONS**

Even with dominator-based VN, we cannot find redundant expressions computed on **different** paths.

An alternative approach is to compute **available expressions**.

An expression e is **available** at node n if on **every** path from S to n, e is evaluated and none of its constituent variables is redefined between that evaluation and n.

If an expression is available at a node where it is being recomputed, it is possible to replace the recomputation by a variable representing the result of the previous computation.

This is a classic data flow analysis problem, specified thus:

$$\begin{split} gen(\texttt{t} \leftarrow \texttt{b} \text{ bop } \texttt{c}) &= \{\texttt{b} \text{ bop } \texttt{c}\} & kill(\texttt{t} \leftarrow \_) = \bigcup_{\forall u, bop} \{\texttt{t} \text{ bop } \texttt{u}, \texttt{u} \text{ bop } \texttt{t}\} \\ gen(\textit{other instruction}) &= \emptyset & kill(\textit{other instruction}) = \emptyset \\ in(n) &= \bigcap_{p \in pred(n)} out(p) \\ out(n) &= (in(n) \cup gen(n)) - kill(n) \end{split}$$

Here we want in(n), the set of expressions available on entry to n.

#### **AVAILABLE EXPRESSIONS EXAMPLE**



# SOLUTIONS

This is a forwards data flow problem, with initial approximation

```
in[1] = Ø
in[2] = in[3] = in[4] = {a+b,a-b,a*b,a/b}
```

Here's the (unique) solution to the data flow equations.

```
in[1] = {} out[1] = {a+b,a-b,a*b}
in[2] = {a+b,a-b,a*b} out[2] = {a+b,a-b,a*b,a/b}
in[3] = {a+b,a-b,a*b} out[3] = {a+b,a-b,a*b,a/b}
in[4] = {a+b,a-b,a*b,a/b} out[4] = {a+b,a-b,a*b,a/b}
```

So nothing needs to be recomputed in nodes 2, 3, or 4.

# FOR FURTHER INFORMATION

• Keith Cooper and Linda Torczon, *Engineering a Compiler*, 2nd ed., Morgan Kaufmann, 2012, has thorough and practical coverage of many standard optimizations. (The slides on redundancy analysis are inspired by their treatment.)

• Steve Muchnick, *Advanced Compiler Design & Implmentation*, Morgan Kaufmann, 1997, is the most encyclopedic treatment of the optimization ecosystem.

• Anders Møller and Michael Schwartzbach, *Static Program Analysis*, on-line at https://cs.au.dk/~amoeller/spa/spa.pdf, 2020, treats the theoretical underpinnnings of the analyses that drive optimization.

• Xavier Leroy, "Formal verification of a realistic compiler,"*Commun. ACM*, 52(7), pp. 107–115, 2009, describes the CompCert verified C compiler.