
CS410P/510 Programming Language Compilation
Midterm Exam
Feb. 13, 2024

Name:

Instructions

• This exam has 6 questions, for a total of 85 points.

• You may spend up to 1 hour, 50 minutes (110 minutes) on the exam.

• The exam is closed-book, closed-notes, except that one 8.5”x11” single-sided sheet of
handwritten notes is permitted.

• No computing devices (laptops, tablets, cell phones, etc.) may be used.

The concrete syntax for all the intermediate languages mentioned in the exam
and the X86 register usage conventions can be found on the last two pages.

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

1. [15 points] Consider the languages LIf (the source language for the whole compiler) and
Lmon

if (the intermediate language that is the target of the Remove Complex Operands
pass). For each of the following code examples, indicate whether the example is a
syntactically valid program in LIf only, Lmon

if only, both languages, or neither language.
No explanations are required, but brief ones might help you get partial credit even if
your answer is wrong.

(a) print (- (10 if input_int() == 0 else 20))

(b) x = 0
y = input_int()
x = y if y > 0 else x
print(y)

(c) x = input_int()
y = 2 * x
print(y)

(d) x = input_int()
z = { y = input_int()

w = y + 1
produce -w }

if x == 0
else x + 1

print(z)

(e) x = input_int()
if x < 0:
print (x = 100 - x)

else:
print (x = x - 100)

print(x)

Solution:

(a) LIf only (arguments to print, - and == are not atomic).

(b) LIf and Lmon
if .

(c) Neither (* is not a binary operator).

(d) Lmon
if only (contains a Begin).

(e) Neither (argument to print must be an exp, not a stmt).

Page 2 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

2. [10 points] Consider this fragment of the code implementing Remove Complex Operands:

def rco_stmt(self, s: stmt) -> list[stmt]:
match s:
case Expr(e):
e_rco,temps = self.rco_exp(e,False)
return [Assign([x], rhs) for (x, rhs) in temps] + [Expr(e_rco)]

...

def rco_exp(self, e:expr, need_atomic: bool) -> tuple[expr, list[tuple[Name,expr]]]:
def atomize(e:expr,temps:list[tuple[Name,expr]]):
if need_atomic:
tmp = Name(generate_name(’tmp’))
return (tmp,temps + [(tmp,e)])

else:
return (e,temps)

match e:
...
case Compare(left,[cmpr],[right]):
left_rco, temps1 = self.rco_exp(left,True)
right_rco, temps2 = self.rco_exp(right,True)
return atomize(Compare(left_rco,[cmpr],[right_rco]), temps1 + temps2)

...

Suppose we were to change temps1 + temps2 into temps2 + temps1 in the last line
shown. Write a short test that can distinguish between the behavior of the original
compiler (#1) and the version with the order swapped (#2).

Your test should consist of a source program ex.py (written in LIf), an input file ex.in,
a ex.golden file showing the output expected from compiler #1, and a ex.out file
showing the output that will be produced by compiler #2.

Solution: There are many possible solutions, but they all rely on using input int(),
which is the sole expression that has a side-effect. Here is one simple example:

ex.py:

print (1 if input_int() < input_int() else 0)

ex.in:

1
2

ex.golden:

1

ex.out:

0

Page 3 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

3. [15 points] Translate the following Lmon
if program into CIf .

x = input_int()
z = { y = input_int()

produce -y }
if x == 0
else 42

print(z)

Solution: (Approx. 1 point per statement.)

start:
x = input_int()
if x == 0:
goto block.4

else:
goto block.5

block.4:
y = input_int()
z = -y
goto block.3

block.5:
z = 42
goto block.3

block.3:
print(z)
return 0

Page 4 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

4. [15 points] Translate the following CIf program into x86VarIf .

start:
b = True
x = input_int()
y = x <= 10
z = 42
if y == b:
goto block.1

else:
goto block.2

block.1:
z = -z
goto block.0

block.2:
z = x - 10
goto block.0

block.0:
print(z)
return 0

Solution:

start:
movq $1, b
callq read_int
movq %rax, x
cmpq $10, x
setle %al
movzbq %al, y
movq $42, z
cmpq b, y
je block.1
jmp block.2

block.1:
negq z
jmp block.0

block.2:
movq x, z
subq $10, z
jmp block.0

block.0:
movq z, %rdi
callq print_int
movq $0, %rax
jmp conclusion

Page 5 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

5. [15 points] For the following CIf program, fill in the live variable sets at each specified
point in the program. (Note: although in our compiler we compute liveness information
for X86 code, exactly the same ideas can be used to compute liveness for CIf code.)

start:
live =

a = 1
live =

b = 2
live =

c = a + b
live =

d = input_int()
live =

if d > 0: goto block2
else: goto block3

block2:
live =

a = 2 + b
live =

goto block1

block3:
live =

c = -a
live =

a = c + 2
live =

goto block1

block1:
live =

print(a)
live =

return 0

Page 6 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

Solution:

start:
live = {}

a = 1
live = {a}

b = 2
live = {a,b}

c = a + b
live = {a,b}

d = input_int()
live = {a,b,d}

if d > 0: goto block2
else: goto block3

block2:
live = {b}

a = 2 + b
live = {a}

goto block1

block3:
live = {a}

c = -a
live = {c}

a = c + 2
live = {a}

goto block1

block1:
live = {a}

print(a)
live = {}

return 0

Page 7 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

6. [15 points] Consider the following results from liveness analysis on a x86VarIf program.

start:
{}

callq read_int
{%rax}

movq %rax, x
{x}

movq x, y
{y, x}

addq $1, y
{y, x}

movq y, z
{y, x, z}

addq $1, z
{y, z, x}

cmpq $0, x
{y, x, z}

je block.1
{y, x, z}

jmp block.2
{y, z, x}

block.1:
{x, z}

movq x, %rdi
{%rdi, z}

callq print_int
{z}

jmp block.0
{z}

block.2:
{y, z}

movq y, %rdi
{%rdi, z}

callq print_int
{z}

jmp block.0
{z}

block.0:
{z}

movq z, %rdi
{%rdi}

callq print_int
{}

movq $0, %rax
{%rax}

jmp conclusion
{%rax}

(a) Draw the corresponding interference graph. Assume that %rax will not be used as
an assignable register, so it can be omitted from the graph.

(b) Suppose we assign all the variables of this program to registers (not stack slots).
What is the minimum number of registers needed? How many of these must be callee-
save registers?

Solution: (a)

y

x

%rcx

z

%rdx %rsi %rdi %r8 %r9 %r10 %r11

Page 8 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

(b) Three registers are needed. Of these, one needs to be a callee-save register,
because z is in conflict with all the caller-save registers.

Page 9 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

[This page deliberately left blank.]

Page 10 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

Concrete Syntax of Languages

LIf

cmp ::= == | != | < | <= | > | >=

exp ::= int | bool | var
| input int() | - exp | not exp | exp + exp | exp - exp
| exp and exp | exp or exp | (exp)
| exp cmp exp | exp if exp else exp

stmt ::= print(exp) | exp | var = exp | if exp: stmt+ else: stmt+

LIf ::= stmt∗

Lmon
if

atm ::= int | bool | var
cmp ::= == | != | < | <= | > | >=

exp ::= atm | input int() | - atm | not atm | atm + atm | atm - atm
| atm cmp atm | exp if exp else exp | {stmt∗ produce exp}

stmt ::= print(atm) | exp | var = exp | if exp: stmt+ else: stmt+

Lmon
if ::= stmt∗

Note: the concrete expression {stmt∗ produce exp } corresponds to the AST form Begin(stmt∗, exp).

CIf

atm ::= int | bool | var
cmp ::= == | != | < | <= | > | >=

exp ::= atm | input int() | - atm | not atm | atm + atm | atm - atm
| atm cmp atm

stmt ::= print(atm) | exp | var = exp
tail ::= return exp | goto label | if atm cmp atm: goto label else: goto label
CIf ::= (label: stmt∗ tail) . . .

Page 11 of 13

CS410P/510 Programming Language Compilation
Midterm Exam

Feb. 13, 2024

x86VarIf

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg) | var
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr

x86VarIf ::= .globl main

main: instr . . .

Note: this is the same as x86If , below, except that var is allowed as an arg .

x86If

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= $int | %reg | %bytereg | int(%reg)
cc ::= e | ne | l | le | g | ge

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg
| pushq arg | popq arg | callq label | retq

| xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg
| jmp label | jcc label | label: instr

x86If ::= .globl main

main: instr . . .

The caller-saved registers are:

rax rcx rdx rsi rdi r8 r9 r10 r11

The callee-saved registers are:

rsp rbp rbx r12 r13 r14 r15

The argument registers are:

rdi rsi rdx rcx r8 r9

The result register is:

rax

Page 12 of 13

