
CS410P/510 Programming Language
Compilation
Winter 2024

Lecture on Java Virtual Machine and Interpreters

1

VIRTUAL MACHINES

• Widely used at both language and whole-system level.

• Offer enhanced portability, by abstracting away from specifics of
underlying target platform.

• VM code is a well-specified intermediate representation that can be
processed in many useful ways:

- transmitted
- interpreted
- compiled
- linked
- verified
- ...

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 2

JAVA ARCHITECTURE

Source
.java

Bytecode
.class

javac:
 parse
 type check

java (JVM):
 verify
 interpret
 and/or
 compile to
 na@ve code

javap:
 preAy‐print

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 3

JAVA ARCHITECTURE FEATURES

• Mandated separation of front end and back end with precisely specified
intermediate code.

• Back end doesn’t trust provider of bytecode; hence verification step in
JVM.

• Focus on high-speed compilation:

- JIT (“just-in-time”) compilers
- mixed interpreter/compiler (eg HotSpot)
- feedback-directed optimization

• Focus on resource-bounded compilation and execution environment.

• Dynamic loading (and even reloading) of class definitions.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 4

JAVA ARCHITECTURE ISSUES

• Except for the need to support dynamic loading, we could dispense
with bytecode and JVM, and use standard compiler architecture for Java
too; some experimental systems do.

• Bytecode is a relatively high-level IR (can recover source from it), and is
better suited to being interpreted than to being optimized. So compiler in
JVM often uses lower-level IR.

• We can essentially dispense with front-end and just treat bytecode as
source.

• JVM bytecode sometimes used as target for other source languages
(e.g. Scala), although not really designed for this purpose.

- Microsoft’s .NET explicitly intends its bytecode (CIL) as a
multi-language common ground.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 5

JAVA EXAMPLE: SOURCE CODE

class Example {

public static void main(String [] argv) {

int i;

int a = 507;

for (i = 0 ; i < 10; i++)

a = (a + i) - f(i * 2);

System.out.println(a);

}

private static int f(int x) {

return x+42;

}

}

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 6

BYTECODE FOR EXAMPLE

% javac Example.java

% java Example

42

% javap -c -p Example

Compiled from "Example.java"

class Example {

Example();

Code:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return

private static int f(int);

Code:

0: iload_0

1: bipush 42

3: iadd

4: ireturn

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 7

public static void main(java.lang.String[]);

Code:

0: sipush 507

3: istore_2

4: iconst_0

5: istore_1

6: iload_1

7: bipush 10

9: if_icmpge 29

12: iload_2

13: iload_1

14: iadd

15: iload_1

16: iconst_2

17: imul

18: invokestatic #2 // Method f:(I)I

21: isub

22: istore_2

23: iinc 1, 1

26: goto 6

29: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream;

32: iload_2

33: invokevirtual #4 // Method java/io/PrintStream.println:(I)V

36: return

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 8

VM ARCHITECTURE: STACKS AND FRAMES

The VM stack consists of a sequence of frames; frames need not be
contiguous in memory. Frame size and overall stack size may be limited
by implementations. (There is actually one stack per VM thread.)

One frame is associated with each method invocation. Each frame
contains two areas, each of statically fixed size (per method):

• local variable storage associated with the method, and

• an operand stack for evaluating expressions within the method and for
communicating arguments and results with other methods.

The local variable area is an array of words, addressed by word offset
from the array base. The arguments to a method (including this, for
instance methods) always appear as its initial local variables.

The operand stack is a stack of words.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 9

TYPES AND VERIFICATION

The JVM directly supports each of the primitive Java types (except
boolean, which is mapped to int). Floating-point arithmetic follows IEEE
754. Values of reference types (classes,interfaces,arrays) are pointers to
heap records, whose layout is implementation-dependent.

Data values are not tagged with type information, but instructions are.
When executing, the JVM assumes that instructions are always operating
on values of the correct type. The instruction set is designed to make it
possible to verify that any given method is type-correct, without
executing it. The JVM performs verification on any bytecode derived from
an untrusted source (e.g., over the network).

At any given point of execution, each entry in the local variable area and
the operand stack must have a well-defined type state; i.e., it must be
possible to deduce the type of each entry unambiguously.

To enforce this property, JVM code must be generated with care. For
example, when there are two execution paths to the same PC, they must
arrive with identical type state. So, for example, it is impossible to to use
a loop to copy an array onto the stack.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 10

INSTRUCTION SET

Each JVM instruction consists of a one-byte op code followed by zero or
more parameters.

The inner loop of the JVM execution engine (ignoring exceptions) is effec-
tively:

do {

fetch opcode;

if (there are parameters) fetch parameters;

execute action for opcode;

} while (more to do);

Most instructions take their operands from the top of the stack (popping
them in the process) and push their result back on the top of the stack. A
few operate directly on local variables.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 11

INSTRUCTION SET ORGANIZATION

Most instructions encode the type of their operands; thus, many
instructions have multiple versions distinguished by their prefix
(i,l,f,d,b,s,c,a).

Instructions group into families. Each family does the same basic
operation, but has a variety of members distinguished by operand type
and built-in arguments.

The instruction set is not totally orthogonal; in particular, few operations
are provided for bytes, shorts, and chars, and integer comparisons are
much simpler than non-integer ones. In all, 201 out of 255 possible
op-code values are used.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 12

EXAMPLE FAMILY: PUSH LOCAL VARIABLE ONTO STACK

Load 1-word integer from local variable n:
iload n (0 ≤ n ≤ 255)
iload_n (0 ≤ n ≤ 3)
wide iload n (0 ≤ n ≤ 65535)

Load 2-word long from local variables n and n+ 1:
lload n (0 ≤ n ≤ 255)
lload_n (0 ≤ n ≤ 3)
wide lload n (0 ≤ n ≤ 65535)

Load 1-word float from local variables n:
fload n (0 ≤ n ≤ 255)
fload_n (0 ≤ n ≤ 3)
wide fload n (0 ≤ n ≤ 65535)

Load 2-word double from local variables n and n+ 1:
dload n (0 ≤ n ≤ 255)
dload_n (0 ≤ n ≤ 3)
wide dload n (0 ≤ n ≤ 65535)

Load 1-word object reference from local variable n:
aload n (0 ≤ n ≤ 255)
aload_n (0 ≤ n ≤ 3)
wide aload n (0 ≤ n ≤ 65535)

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 13

FAMILIES OF OPERATIONS (1)

Load and Store

• load - push local variable onto stack
• store - pop top-of-stack into local variable
• push,ldc,const - push constant onto stack
• wide - modify following load or store to have wider parameter.

Arithmetic and Logic

• add,sub,mul, div, rem, neg
• shl,shr, ushr
• or, and, xor
• iinc - increment local variable

Conversions

• i2l,i2f,i2d,l2f,l2d,f2d.
• i2b,i2c,i2s, etc. - never raise exception.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 14

MORE OPERATIONS (2)

Stack management

• pop,dup,dup x,swap

Control transfer

• if icmpeq,if icmplt, etc. – compare ints and branch
• ifeq,iflt, etc. – compare int with zero and branch
• if acmpeq, if acmpne – compare refs and branch
• ifnull,ifnonnull – compare ref with null and branch
• cmp – compare (non-integer) values and push result code (-1,0,1)
• tableswitch,lookupswitch – for switch statements
• goto – target is offset in method code
• jsr,ret – intended for finally
• athrow – throw explicit exception

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 15

MORE OPERATIONS (3)

Objects

• new – create new class instance
• newarray – creates new array
• getfield,putfield – access instance variables
• getstatic,putstatic – access class variables
• aload, astore – push, pop array elements to,from stack
• arraylength
• instanceof, checkcast – runtime narrowing checks

Method invocation

• invokevirtual – for ordinary instance methods
• invokeinterface – for interface methods
• invokespecial – for constructor (<init>),private, or superclass
methods
• invokestatic – for static methods
• return

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 16

BYTECODE SUMMARY

JVM Bytecode is intended to be both easy to interpret and easy to use as
compiler IR. As an IR, it’s fairly high-level (largely for safety reasons).

It makes the following explicit:

• Parameter and local variable offsets

• Temporaries (using stack)

• Order of evaluation

• Control flow within procedures

• Exceptions

But it leaves the following implicit:

• Object layout and field offsets

• Array access

• Method calls (virtual or otherwise)

• Inheritance hierarchy

All these must be resolved inside the JVM implementation.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 17

MAKING INTERPRETERS EFFICIENT

• Many systems (not just Java) use VM’s with an explicitly specified
binary program representation (conventionally called bytecode even if
instructions aren’t byte-sized).

• Most VM’s can execute bytecode directly by interpretation.

• Interpretation is typically 1-2 orders of magnitude slower than
compilation (but of course this depends on interpreter, compiler, target
machine)

• So serious VM’s usually do JIT compilation too

• Still, it is worthwhile to make interpreters efficient

• But it is also desirable to keep them portable (e.g. stick to standard C)

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 18

COSTS OF INTERPRETATION

Interpreting an instruction requires:

• Dispatching the instruction: getting control to the code corresponding
to the instruction

• Accessing the operands: getting the values of the parameters and
arguments (and storing the result)

• Actually performing the computation. (Note: the longer this takes, the
smaller the percentage overhead of interpretation!)

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 19

NAIVE JAVA INTERPRETER: SAMPLE INSTRUCTIONS

u4 stack[STACKSIZE];

void interp (Method *method,u4 *sp) {

u1 *pc = method->code;

u4 *locals = sp - method->nargs + 1;

sp = locals + method->max_locals - 1;

while (1) {

switch (*pc) {

case ICONST_3: // push the constant 3 onto the operand stack

{ *(++sp) = 3;

pc++;

break; }

case ISTORE_1: // pop the top of the operand stack into local var #1

{ locals[1] = *(sp--);

pc++;

break; }

case IADD: // replace top two elements of stack with their sum

{ int32_t v2 = (int32_t) (*(sp--));

int32_t v1 = (int32_t) (*sp);

*sp = v1 + v2;

pc++;

break; }

...

}}}
PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 20

OPERAND ACCESS

First, let’s consider just the cost of accessing stack elements:
loads/stores to memory and sp adjustment.

C code:

case ICONST_3: { *(++sp) = 3; pc++; break; }

X86 (64-bit) machine code (obtained using clang -S)

// %rbx holds sp; %r14 holds pc

movl $3, 4(%rbx) // *(new sp) = 3

addq $4, %rbx // new sp = sp + 4

addq $1, %r14 // pc++

jmp top

This code is pretty tight, assuming that the stack must be held in memory.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 21

OPERAND ACCESS

C code:

case ISTORE_1: { locals[1] = *(sp--); pc++; break; }

X86 (64-bit) machine code (obtained using clang -S)

// %rbx holds sp; %r14 holds pc; %r13 points to base of locals

movl (%rbx), %eax // *old_sp

addq $-4, %rbx // new sp = sp - 4

movl %eax, 4(%r13) // locals[1] = *old_sp

addq $1, %r14 // pc++

jmp top

Again, hard to do better, assuming that locals are held in memory.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 22

OPERAND ACCESS

C code:

case IADD: { int32_t v2 = (int32_t) (*(sp--));

int32_t v1 = (int32_t) (*sp);

*sp = v1 + v2;

pc++; break; }

X86-64 code:

// %rbx holds sp; %r14 holds pc

movl (%rbx), %eax // *sp

addl %eax, -4(%rbx) // *(new_sp) = *(new_sp) + *sp

addq -4, %rbx // new_sp = sp - 4

addq $1, %r14 // pc++

jmp top

Most obvious problem is that nearly every instruction loads and/or stores
stack entries.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 23

STACK CACHING

Idea: what if we cache the top-of-stack in a local variable s0?

(Assume that sp points to the top of the remainder of the stack.)

This saves one load and one store for IADD:

case IADD: {int32_t v2 = (int32_t) s0;

int32_t v1 = (int32_t) (*(sp--));

s0 = v1+v2; pc++; break; }

Approximate X86-64 code:

// %rbx holds sp (pointer to slot1); %r14 holds pc;

// %r10d holds slot0

movl (%rbx), %eax // load *sp

addl %eax, %r10d // slot0 = *sp + slot0

addq -4, %rbx // new_sp = sp - 4

addq $1, %r14 // pc++

jmp top

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 24

CACHING ONE SLOT

But it is a wash for the other two instructions because we have to keep s0

up-to-date.

case ICONST_3: { *(++sp) = s0; s0 = 3; pc++; break; }

Approximate X86-64 code (still one stack store)

// %rbx holds sp (pointer to slot1) ; %r14 holds pc;

// %r10d holds slot0

addq $4, %rbx // new_sp = sp + 4

movl %r10d, (%rbx) // *new_sp = slot0

movl $3, %r10d // slot0 = 3

addq $1, %r14 // pc++

jmp top

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 25

CACHING ONE SLOT (CONTINUED)

case ISTORE_1: { locals[1] = s0; s0 = *(sp--); pc++; break; }

Approximate X86-64 code (still one stack load)

// %rbx holds sp (pointer to slot1);

// %r13 points to base of locals

// %r14 holds pc; %r10d holds slot0

movl %r10d, 4(%r13) // locals[1] = slot0

movl (%rbx), %r10d // slot0 = *sp

addq -4, %rbx // sp = sp - 4

addq $1, %r14 // pc++

jmp top

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 26

CACHING TWO SLOTS

What if we keep two elements in local variables (registers) named s1 (top
of stack) and s0 (next-to-top of stack)?

case ISTORE_1: { locals[1] = s1; s1 = s0; s0 = *(sp--);

pc++; break;}

case ICONST_3: { *(++sp) = s0; s0 = s1; s1 = 3;

pc++; break; }

case IADD: { s1 = s1+s0; s0 = *(sp--); pc++; break;}

This just pushes off the problem: no improvement in number of loads and
stores needed.

New idea: let’s keep a different number of cached stack slots at different
points during execution.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 27

GENERALIZED STACK CACHING

• Interpreter operates in one several different states corresponding to
how many stack slots are cached.

• Each instruction (potentially) causes transition to a different state,
according to what it does to the stack.

• For example:

ICONST 3 moves to a state where more slots are cached;

ISTORE 1 moves to one where fewer slots are cached.

IADD moves to a state where one slot is cached.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 28

GENERALIZED STACK CACHING (2)

For JVM, 3 states are sufficient to handle all instruction types.

State 0: no slots cached.

State 1: top of stack is cached in variable s0.

State 2: top of stack is cached in variable s1; next-to-top in s0.

In all states, sp points to remainder of stack beyond cached slots.

Sample code follows (in practice we may organize it differently)...

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 29

case IADD: {

switch (state) {

case 0: { int32 v2 = (int32) (*(sp--)); int32 v1 = (int32) (*(sp--));

s0 = (v1+v2); state = 1; break; }

case 1: { int 32 v2 = (int32) s0; int32 v1 = (int32) (*(sp--));

s0 = (v1+v2); state = 1; break; }

case 2: { int 32 v2 = (int32) s1; int32 v1 = (int32) s0;

s0 = (v1+v2); state = 1; break; }

pc++; break; }

case ICONST_3: {

switch (state) {

case 0: s0 = 3; state = 1; break;

case 1: s1 = 3; state = 2; break;

case 2: *(++sp) = s0; s0 = s1; s1 = 3; state = 2; break; }

pc++; break; }

case ISTORE_1: {

switch (state) {

case 0: locals[1] = *(sp--); state = 0; break;

case 1: locals[1] = s0; state = 0; break;

case 2: locals[1] = s1; state = 1; break; }

pc++; break; }

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 30

EXAMPLE SEQUENCE

Consider a typical expression like

b = a + 3

where we assume a is local variable 0 and b is local variable 1.

(Assume we start with state = 0.)

Bytecode Corresponding executed code

ILOAD_0 s0 = locals[0]; state = 1;

ICONST_3 s1 = 3; state = 2;

IADD s0 = s1 + s0; state = 1;

ISTORE_1 locals[1] = s0; state = 0;

We do only the essential loads and stores – no stack traffic at all!

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 31

3-STATE TRANSITION DIAGRAM

More generally, instructions are classified by a pair:
(# of stack slots they consume, # of stack slots they produce)

For example:

ISTORE_0 1,0

ICONST_0 0,1

IADD 2,1

2,1

0 1 2
0,0
1,0
2,0

1,1
2,1

0,1
0,1
2,2

0,0
0,1
1,1
2,2

2,1
1,1
0,0

2,0
3,0

2,2

1,0
2,0
3,0

1,0

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 32

DYNAMIC VS. STATIC CACHING

So far we’ve described dynamic stack caching, where the interpreter
keeps track of its current state.

• In practice, we implement this by having three complete sets of
instruction implementations and dispatching to the correct one based on
current state as well as opcode (more on this later).

• But it may seem like we should be able to predict the state at each
program point statically (before execution). If so, we could simply have
three variants of each opcode, and select the right one at compile time.
This would be more efficient.

• Only problem: at join points in the code, the state may differ
depending on the path by which the join point was reached. Must choose
a convention for which state to use there, and add compensation code
to the other branches; this is complex in practice.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 33

ASIDE: WHY USE STACK-BASED VM’S?

Nearly all hardware processors use registers

• Each HW instruction is parameterized by its argument/result registers.

• Why is this good for hardware? Because the opcode and the argument
registers can be decoded in parallel, and values can quickly be fetched
from a small, fast register file.

Why not try this in software machines too?

• Parameters must be fetched from the byte stream and decoded
serially; for stack instructions, parameters are implicit.

• Instructions with parameters take more space.

• Software registers cannot easily be stored in hardware registers,
because the latter can’t be indexed. So software registers end up living in
an in-memory array (just like stack slots).

• On the other hand, register architectures require fewer instructions;
hence less dispatch. So maybe a worthwhile idea after all...

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 34

SPEEDING UP INSTRUCTION DISPATCH

What does X86-64 code look like now?
// %r12 holds table; %r14 holds pc

top: movzbl (%r14), %rax // fetch opcode at pc

cmpq $tablesize, %rax // compare against jump table size

ja undefined // if out of range branch to "undefined"

movslq (%r12,%rax,4), %rax // get table entry=snippet address-table base

addq %r12,%rax // add to table base

jmpq *%rax // jump to snippet

table:

.word nop_snippet-table

.word aconst_null_snippet-table

.word iconst_m1_snippet-table

.word iconst_0_snippet-table

...

.word goto_w_snippet-table

undefined:

...issue error and die...

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 35

THEADED CODE

Obvious performance problems:

• Unnecessary bounds check.

• Two jumps per dispatch (counting the one back to top at the end of the
previous instruction).

First fix: (Indirect) Threaded Code

If we can code our own indirect jumps, could

• Remove bounds check.

• Replicate dispatch at end of every snippet, thus removing one jump.

• This is not possible in ANSI Standard C, but can do in gcc using the &&

operator.

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 36

INDIRECT THREADED CODE

interp(Method method) {

static void *dispatch_table[] =

{&&NOP,

&&ACONST_NULL,

&&ICONST_M1,

...,

&&JSR_W };

char *pc = method->code;

...

goto *(dispatch_table[*pc]);

NOP:

pc++;

goto *(dispatch_table[*pc]);

ACONST_NULL:

*(++sp) = (u4) 0;

pc++;

goto *(dispatch_table[*pc]);

...

}

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 37

DIRECT THREADING

Each instruction dispatch still requires two fetches: one to get the byte
code and a second to get the snippet address.

New idea: what if we represent each instruction opcode by the address of
its snippet?

interp() {

char *codeaddrs[] = ...; /* fill this with snippet addrs */

char *pc = codeaddrs; /* initialize to start */

goto **pc;

ACONST_NULL:

*(++sp) = (u4) 0;

pc++;

goto **pc;

...

Now need only one fetch per instruction!

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 38

REWRITING BYTE CODE

But notice that we’re no longer interpreting the original bytecode any
more.

Must rewrite before execution

Simple in principle, but there are details. e.g.

• What should we do with the parameter bytes following the opcode?

If we’re going to rewrite the bytecode, there are many opportunities to
improve things, e.g.

• Combine code for similar opcodes (e.g. constant loading).

• Short-circuit constant pool references (important in full language)

• Perform static stack caching

• Etc, etc.

A more radical rewrite idea: dispatch to each snippet using a subroutine
call instruction. May pay off on processors that pre-fetch from the return
address on the hardware stack!

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 39

REDUCING DISPATCHES

Another way to reduce dispatch time is to do fewer dispatches.

One basic approach is to combine sequences of instructions that occur
frequencly into into “macro” or “super”-instructions.

For example, the following sequence pattern is very common:

ILOAD n

ICONST i

IADD

ISTORE n

In fact, the JVM designers already invented a combined instruction for
this (IINC) but the same idea works for other sequences.

Another approach is to use a register architecture, which typically
requires many fewer instructions (although each instruction gets more
parameters).

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 40

BUILDING COMBINED INSTRUCTIONS

This can be done in several ways:

• Statically, for multiple programs:

- Essentially a refinement of the VM definition, possibly tuned to workload
from a particular set of programs.

- Can construct such specialized VM’s semi-automatically from a generic
VM.

- Specialized VM can be compiled with “cross-snippet” optimization.

• Statically, for a single program

- Encoding is sent with the program.

Static encodings also have the benefit of reducing the program size,
allowing quicker transmission.

• Dynamically, by building superinstructions “on the fly” from snippet
code.

- This is beginning to resemble a compiler!

PSU CS410P/510 WINTER’24 LECTURE ON JAVA VIRTUAL MACHINE AND INTERPRETERS © 1992–2024 ANDREW TOLMACH 41

