
7 Tuples and Garbage Collection

Specialized version of this chapter for use at PSU, Winter 2024.
In this chapter we study the implementation of tuples. A tuple is a fixed-length

sequence of elements in which each element may have a di�erent type. This language
feature is the first to use the computer’s heap, because the lifetime of a tuple is
indefinite; that is, a tuple lives forever from the programmer’s viewpoint. Of course,
from an implementer’s viewpoint, it is important to reclaim the space associated
with a tuple when it is no longer needed, which is why we also study garbage
collection techniques in this chapter.

Section 7.1 introduces the LTup language, including its interpreter and type
checker. The LTup language extends the LWhile language (chapter 6) with tuples.
Section 7.2 describes a garbage collection algorithm based on copying live tuples
back and forth between two halves of the heap. The garbage collector requires coor-
dination with the compiler so that it can find all the live tuples. Sections 7.4 through
7.8 discuss the necessary changes and additions to the compiler passes, including a
new compiler pass named expose_allocation.

7.1 The LTup Language

Figure 7.1 shows the definition of the concrete syntax for LTup, and figure 7.2
shows the definition of the abstract syntax. The LTup language adds (1)
tuple creation via a comma-separated list of expressions; (2) accessing or
updating an element of a tuple with the square bracket notation (i.e., t[n]

returns the element at index n of tuple t); and (3) the is comparison
operator; and (4) obtaining the number of elements (the length) of a tuple. In this
chapter, we restrict access indices to constant integers.

Our tuples follow the standard Python syntax for tuples. In particular, a one-
element tuple containing e is written (e,) and a zero-element tuple is written ().
Our tuples also have similar semantics to those of Python, except that (1) we
restrict indices to be constant integers rather than arbitrary expressions, and (2)
we allow tuple fields to be updated (using an assignment statement) as long as the
type of the field does not change, whereas Python treats tuples as immutable data
structures.

The following program shows an example of the use of tuples. It creates a tuple
t containing the elements 40, True, and another tuple that contains just 3. It then

100 Chapter 7

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)

stmt ::= print(exp) | exp

exp ::= var

stmt ::= var = exp

cmp ::= == | != | < | <= | > | >=

exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp

stmt ::= if exp: stmt
+

else: stmt
+

stmt ::= while exp: stmt
+

cmp ::= is

exp ::= exp, … ,exp | () | exp[int]

stmt ::= exp[int] = exp

LTup ::= stmt
ú

Figure 7.1
The concrete syntax of LTup, extending LWhile (figure 6.1).

updates the initial element of the tuple to be 39. The element at index 1 of t is
True, so the then branch of the if is taken. The element at index 0 of t is now 39,
to which we add 3, the element at index 0 of the tuple. The result of the program
is 42.

t = 40, True, (3,)

t[0] = 39

print(t[0] + t[2][0] if t[1] else 44)

Tuples raise several interesting new issues. First, variable binding performs a
shallow copy in dealing with tuples, which means that di�erent variables can refer
to the same tuple; that is, two variables can be aliases for the same entity. Consider
the following example, in which t1 and t2 refer to the same tuple value and t3

refers to a di�erent tuple value with equal elements. The result of the program is
42.

t1 = 3, 7

t2 = t1

t3 = 3, 7

print(42 if (t1 is t2) and not (t1 is t3) else 0)

Whether two variables are aliased or not a�ects what happens when the under-
lying tuple is mutated. Consider the following example in which t1 and t2 again
refer to the same tuple value.

t1 = 3, 7

t2 = t1

t2[0] = 42

print(t1[0])

Tuples and Garbage Collection 101

exp ::= Constant(int) | Call(Name(�input_int�),[])

| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)

| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name(�print�),[exp])) | Expr(exp)

exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)

boolop ::= And() | Or()

cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()

bool ::= True | False

exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])

| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt
+
, stmt

+
)

stmt ::= While(exp, stmt
+
, [])

cmp ::= Is()

exp ::= Tuple(exp
ú
,Load()) | Subscript(exp,Constant(int),Load())

stmt ::= Assign([Subscript(exp,Constant(int),Store())], exp)

LTup ::= Module(stmt
ú
)

Figure 7.2
The abstract syntax of LTup.

The mutation through t2 is visible in referencing the tuple from t1, so the result
of this program is again 42.

The next issue concerns the lifetime of tuples. When does a tuple’s lifetime end?
Notice that LTup does not include an operation for deleting tuples. Furthermore,
the lifetime of a tuple is not tied to any notion of static scoping. For example, the
following program returns 42 even though the variable x goes out of scope when
the function returns, prior to reading the tuple element at index 0. (We study the
compilation of functions in chapter 8.)

def f():

x = 42, 43

return x

t = f()

print(t[0])

From the perspective of programmer-observable behavior, tuples live forever.
However, if they really lived forever then many long-running programs would run
out of memory. To solve this problem, the language’s runtime system performs
automatic garbage collection.

Figure 7.3 shows the definitional interpreter for the LTup language. We repre-
sent tuples with Python lists in the interpreter because we need to write to them
(section 7.4). (Python tuples are immutable.) We define element access, update,
and the is operator, and the len operator for LTup in terms of the corresponding
operations in Python.

102 Chapter 7

class InterpLtup(InterpLwhile):

def interp_cmp(self, cmp):

match cmp:

case Is():

return lambda x, y: x is y

case _:

return super().interp_cmp(cmp)

def interp_exp(self, e:expr, env:Env) -> Any:

match e:

case Tuple(es, Load()):

return [self.interp_exp(e, env) for e in es]

case Subscript(tup, Constant(index), Load()):

t = self.interp_exp(tup, env)

return t[index]

case _:

return super().interp_exp(e, env)

def interp_stmt(self, s:stmt, env:Env, cont:list[stmt]):

match s:

case Assign([Subscript(tup, Constant(index))], value):

tup = self.interp_exp(tup, env)

tup[index] = self.interp_exp(value, env)

return self.interp_stmts(cont, env)

Figure 7.3
Interpreter for the LTup language.

Figure 7.4 shows the type checker for LTup. The type of a tuple is a TupleType

type that contains a type for each of its elements. The type of accessing the ith
element of a tuple is the ith element type of the tuple’s type, if there is one. If not,
an error is signaled. Note that the index i is required to be a constant integer (and
not, for example, a call to input_int) so that the type checker can determine the
element’s type given the tuple type.

7.2 Garbage Collection

Garbage collection is a runtime technique for reclaiming space on the heap that
will not be used in the future of the running program. We use the term object to
refer to any value that is stored in the heap, which for now includes only tuples.1
Unfortunately, it is impossible to know precisely which objects will be accessed in
the future and which will not. Instead, garbage collectors overapproximate the set of
objects that will be accessed by identifying which objects can possibly be accessed.

1. The term object as it is used in the context of object-oriented programming has a more specific
meaning than the way in which we use the term here.

Tuples and Garbage Collection 103

class TypeCheckLtup(TypeCheckLwhile):

def type_check_exp(self, e, env):

match e:

case Compare(left, [cmp], [right]) if isinstance(cmp, Is):

l = self.type_check_exp(left, env)

r = self.type_check_exp(right, env)

check_type_equal(l, r, e)

return bool
case Tuple(es, Load()):

ts = [self.type_check_exp(e, env) for e in es]

e.has_type = TupleType(ts)

return e.has_type

case Subscript(tup, Constant(i), Load()):

tup_ty = self.type_check_exp(tup, env)

i_ty = self.type_check_exp(Constant(i), env)

check_type_equal(i_ty, int, i)

match tup_ty:

case TupleType(ts):

return ts[i]

case _:

raise Exception(�expected a tuple, not � + repr(tup_ty))

case _:

return super().type_check_exp(e, env)

def type_check_stmts(self, ss, env):

if len(ss) == 0:

return VoidType()

match ss[0]:

case Assign([Subscript(tup, Constant(index), Store())], value):

tup_t = self.type_check_exp(tup, env)

index_ty = self.type_check_exp(Constant(index), env)

self.check_type_equal(index_ty, IntType(), index)

value_t = self.type_check_exp(value, env)

match tup_t:

case TupleType(ts):

self.check_type_equal(ts[index], value_t, ss[0])

case _:

raise Exception(�expected a tuple, not � + repr(tup_t))

return self.type_check_stmts(ss[1:], env)

case _:

return super().type_check_stmts(ss, env)

Figure 7.4
Type checker for the LTup language.

104 Chapter 7

The running program can directly access objects that are in registers and on the
procedure call stack. It can also transitively access the elements of tuples, starting
with a tuple whose address is in a register or on the procedure call stack. We define
the root set to be all the tuple addresses that are in registers or on the procedure
call stack. We define the live objects to be the objects that are reachable from the
root set. Garbage collectors reclaim the space that is allocated to objects that are
no longer live. That means that some objects may not get reclaimed as soon as
they could be, but at least garbage collectors do not reclaim the space dedicated
to objects that will be accessed in the future! The programmer can influence which
objects get reclaimed by causing them to become unreachable.

So the goal of the garbage collector is twofold:

1. to preserve all the live objects, and
2. to reclaim the memory of everything else, that is, the garbage.

7.2.1 Two-Space Copying Collector
Here we study a relatively simple algorithm for garbage collection that is the basis
of many state-of-the-art garbage collectors (Lieberman and Hewitt 1983; Ungar
1984; Jones and Lins 1996; Detlefs et al. 2004; Dybvig 2006; Tene, Iyengar, and
Wolf 2011). In particular, we describe a two-space copying collector (Wilson 1992)
that uses Cheney’s algorithm to perform the copy (Cheney 1970). Figure 7.5 gives
a coarse-grained depiction of what happens in a two-space collector, showing two
time steps, prior to garbage collection (on the top) and after garbage collection (on
the bottom). In a two-space collector, the heap is divided into two parts named
the FromSpace and the ToSpace. Initially, all allocations go to the FromSpace until
there is not enough room for the next allocation request. At that point, the garbage
collector goes to work to make room for the next allocation.

A copying collector makes more room by copying all the live objects from the
FromSpace into the ToSpace and then performs a sleight of hand, treating the
ToSpace as the new FromSpace and the old FromSpace as the new ToSpace. In
the example shown in figure 7.5, the root set consists of three pointers, one in a
register and two on the stack. All the live objects have been copied to the ToSpace
(the right-hand side of figure 7.5) in a way that preserves the pointer relationships.
For example, the pointer in the register still points to a tuple that in turn points
to two other tuples. There are four tuples that are not reachable from the root set
and therefore do not get copied into the ToSpace.

The exact situation shown in figure 7.5 cannot be created by a well-typed program
in LTup because it contains a cycle. However, creating cycles will be possible once
we get to LDyn (chapter 10). We design the garbage collector to deal with cycles to
begin with, so we will not need to revisit this issue.

7.2.2 Graph Copying via Cheney’s Algorithm
Let us take a closer look at the copying of the live objects. The allocated objects
and pointers can be viewed as a graph, and we need to copy the part of the graph
that is reachable from the root set. To make sure that we copy all the reachable

Tuples and Garbage Collection 105

7 5

True 42

4

8

3

5

6

2

Stack

Registers

1 False …

9

True
0

…

Heap
FromSpace ToSpace

7 5

True 42

4

8

3

5

6

2

Stack

Registers

1 False …

9

True
0

…

Heap
FromSpace ToSpace

7 5

True 42

4

8

3

Figure 7.5
A copying collector in action.

vertices in the graph, we need an exhaustive graph traversal algorithm, such as
depth-first search or breadth-first search (Moore 1959; Cormen et al. 2001). Recall
that such algorithms take into account the possibility of cycles by marking which
vertices have already been visited, so to ensure termination of the algorithm. These
search algorithms also use a data structure such as a stack or queue as a to-do list
to keep track of the vertices that need to be visited. We use breadth-first search
and a trick due to Cheney (1970) for simultaneously representing the queue and
copying tuples into the ToSpace.

Figure 7.6 shows several snapshots of the ToSpace as the copy progresses. The
queue is represented by a chunk of contiguous memory at the beginning of the
ToSpace, using two pointers to track the front and the back of the queue, called the
free pointer and the scan pointer, respectively. The algorithm starts by copying all
tuples that are immediately reachable from the root set into the ToSpace to form
the initial queue. When we copy a tuple, we mark the old tuple to indicate that
it has been visited. We discuss how this marking is accomplished in section 7.2.3.

106 Chapter 7

7 5 4

scan
pointer

free
pointer

7 5 4

scan
pointer

free
pointer

True 42

7 5 4

scan
pointer

free
pointer

True 42 3

7 5 4

scan
pointer

free
pointer

True 42 3 8

7 5 4

scan
pointer

free
pointer

True 42 3 8

Figure 7.6
Depiction of the Cheney algorithm copying the live tuples.

Note that any pointers inside the copied tuples in the queue still point back to
the FromSpace. Once the initial queue has been created, the algorithm enters a
loop in which it repeatedly processes the tuple at the front of the queue and pops
it o� the queue. To process a tuple, the algorithm copies all the objects that are
directly reachable from it to the ToSpace, placing them at the back of the queue.
The algorithm then updates the pointers in the popped tuple so that they point to
the newly copied objects.

Tuples and Garbage Collection 107

As shown in figure 7.6, in the first step we copy the tuple whose second element is
42 to the back of the queue. The other pointer goes to a tuple that has already been
copied, so we do not need to copy it again, but we do need to update the pointer to
the new location. This can be accomplished by storing a forwarding pointer to the
new location in the old tuple, when we initially copied the tuple into the ToSpace.
This completes one step of the algorithm. The algorithm continues in this way until
the queue is empty; that is, when the scan pointer catches up with the free pointer.

7.2.3 Data Representation
The garbage collector places some requirements on the data representations used
by our compiler. First, the garbage collector needs to distinguish between pointers
and other kinds of data such as integers. The following are three ways to accomplish
this:

1. Attach a tag to each object that identifies what type of object it is (McCarthy
1960).

2. Store di�erent types of objects in di�erent regions (Steele 1977).
3. Use type information from the program to either (a) generate type-specific

code for collecting, or (b) generate tables that guide the collector (Appel 1989;
Goldberg 1991; Diwan, Moss, and Hudson 1992).

Dynamically typed languages, such as Python, need to tag objects in any case, so
option 1 is a natural choice for those languages. However, LTup is a statically typed
language, so it would be unfortunate to require tags on every object, especially small
and pervasive objects like integers and Booleans. Option 3 is the best-performing
choice for statically typed languages, but it comes with a relatively high implemen-
tation complexity. To keep this chapter within a reasonable scope of complexity,
we recommend a combination of options 1 and 2, using separate strategies for the
stack and the heap.

Regarding the stack, we recommend using a separate stack for pointers, which
we call the root stack (aka shadow stack) (Siebert 2001; Henderson 2002; Baker
et al. 2009). That is, when a local variable needs to be spilled and is of type
TupleType, we put it on the root stack instead of putting it on the procedure
call stack. Furthermore, we always spill tuple-typed variables if they are live during
a call to the collector, thereby ensuring that no pointers are in registers during a
collection. Figure 7.7 reproduces the example shown in figure 7.5 and contrasts it
with the data layout using a root stack. The root stack contains the two pointers
from the regular stack and also the pointer in the second register.

The problem of distinguishing between pointers and other kinds of data also
arises inside each tuple on the heap. We solve this problem by attaching a tag, an
extra 64 bits, to each tuple. Figure 7.8 shows a zoomed-in view of the tags for two
of the tuples in the example given in figure 7.5. Note that we have drawn the bits
in a big-endian way, from right to left, with bit location 0 (the least significant bit)
on the far right, which corresponds to the direction of the x86 shifting instructions
salq (shift left) and sarq (shift right). Part of each tag is dedicated to specifying
which elements of the tuple are pointers, the part labeled pointer mask. Within the

108 Chapter 7

Stack

Registers
1 False …

9
True

0
…

Root Stack
7 5

4

Heap

Figure 7.7
Maintaining a root stack to facilitate garbage collection.

Unused Pointer mask Vector length

Forwarding

101000011…

7 5

111000000… 1

Figure 7.8
Representation of tuples in the heap.

pointer mask, a 1 bit indicates that there is a pointer, and a 0 bit indicates some
other kind of data. The pointer mask starts at bit location 7. We limit tuples to
a maximum size of fifty elements, so we need 50 bits for the pointer mask.2 The
tag also contains two other pieces of information. The length of the tuple (number
of elements) is stored in bits at locations 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the bit has
value 1, then this tuple has not yet been copied. If the bit has value 0, then the
entire tag is a forwarding pointer. (The lower 3 bits of a pointer are always zero in
any case, because our tuples are 8-byte aligned.)

2. A production-quality compiler would handle arbitrarily sized tuples and use a more complex
approach.

Tuples and Garbage Collection 109

void initialize(uint64_t rootstack_size, uint64_t heap_size);

void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);

int64_t* free_ptr;

int64_t* fromspace_begin;

int64_t* fromspace_end;

int64_t** rootstack_begin;

Figure 7.9
The compiler’s interface to the garbage collector.

7.2.4 Implementation of the Garbage Collector
An implementation of the copying collector is provided in the runtime.c file.
Figure 7.9 defines the interface to the garbage collector that is used by the com-
piler. The initialize function creates the FromSpace, ToSpace, and root stack and
should be called in the prelude of the main function. The arguments of initialize

are the root stack size and the heap size. Both need to be multiples of 16, but
otherwise these choices are pretty arbitrary: we use 65536 for the root stack size
and 16 for the initial heap size. The root stack size should be large enough to make
sure that this stack does not overflow (because we will live dangerously and not
check for this). It would require a deeply recursive program to use up this much
root stack. Our collector implementation automatically resizes the heap as needed,
so the initial heap size doesn’t matter much, but by setting it to 16, we guarantee
to exercise the collector as vigorously as possible, which is good for finding bugs!

The initialize function puts the address of the beginning of the FromSpace
into the global variable free_ptr. The global variable fromspace_end points to
the address that is one past the last element of the FromSpace. We use half-open
intervals to represent chunks of memory (Dijkstra 1982). The rootstack_begin

variable points to the first element of the root stack.
As long as there is room left in the FromSpace, your generated code can allo-

cate tuples simply by moving the free_ptr forward. The amount of room left in
the FromSpace is the di�erence between the fromspace_end and the free_ptr.
The collect function should be called when there is not enough room left in the
FromSpace for the next allocation. The collect function takes a pointer to the
current top of the root stack (one past the last item that was pushed) and the
number of bytes that need to be allocated. The collect function performs the
copying collection and leaves the heap in a state such that there is enough room
for the next allocation.

The introduction of garbage collection has a nontrivial impact on our com-
piler passes. We introduce a new compiler pass named expose_allocation

that elaborates the code for allocating tuples. We also make significant
changes to select_instructions, build_interference, allocate_registers,
and prelude_and_conclusion and make minor changes in several more passes.

110 Chapter 7

The following program serves as our running example. It creates two tuples, one
nested inside the other. Both tuples have length one. The program accesses the
element in the inner tuple.

v1 = (42,)

v2 = (v1,)

print(v2[0][0])

7.3 Shrink and Remove Complex Operands

The shrink pass needs minor additions to cover the new forms in the language.
In the remove_complex_operands pass, the tuple creation and tuple subscripting

expressions should be treated as complex operands. The field subexpressions of the
tuple creation expression and the first subexpression of the subscripting expression
and of the tuple assignment statement must be atomic. The right-hand side expres-
sion of the tuple assignment statement should also be made atomic (this could
be avoided, but would require substantial reworking of the existing code in later
passes). The output of this pass is called Lmon

Tup
.

7.4 Expose Allocation

The pass expose_allocation lowers tuple creation into making a conditional call
to the collector followed by allocating the appropriate amount of memory and
initializing it.

Since we choose to place the expose_allocation pass after remove_complex_operands

pass, we must make sure that it does not create any code that contains complex
operands. The output of expose_allocation is a language Lmon

Alloc
that replaces

tuple creation with new lower-level forms that we use in the translation of tuple
creation. Figure 7.11 shows the grammar for Lmon

Alloc
.

The collect(n) form runs the garbage collector, requesting that there be n

bytes ready to be allocated. During instruction selection, the collect(n) form
will become a call to the collect function in runtime.c. The allocate(n,type)

form obtains memory for n elements (and space at the front for the 64-bit tag),
but the elements are not initialized. The type parameter is the type of the tuple:
TupleType([type

1
, … , type

n
]) where type

i
is the type of the ith element. The

global_value(name) form reads the value of a global variable, such as free_ptr.
The following shows the transformation of tuple creation into (1) a sequence of

temporary variable bindings for the initializing expressions, (2) a conditional call
to collect, (3) a call to allocate, and (4) the initialization of the tuple. The len

placeholder refers to the length of the tuple, and bytes is the total number of bytes
that need to be allocated for the tuple, which is 8 for the tag plus len times 8. The
type needed for the second argument of the allocate form can be obtained from
the has_type field of the tuple AST node, which is stored there by running the
type checker for LTup immediately before this pass.

Tuples and Garbage Collection 111

v1 = {

newp.2 = (free_ptr + 16)

if newp.2 < fromspace_end:

else:

collect(16)

tuple.3 = allocate(1,tuple[int])

tuple.3[0] = 42

produce tuple.3}

v2 = {

newp.4 = (free_ptr + 16)

if newp.4 < fromspace_end:

else:

collect(16)

tuple.5 = allocate(1,tuple[tuple[int]])

tuple.5[0] = v1

produce tuple.5}

tmp.0 = v2[0]

tmp.1 = tmp.0[0]

print(tmp.1)

Figure 7.10
Output of the expose_allocation pass.

(a0, … , an–1)

=∆
{

p = global_value(free_ptr) + bytes

if p < global_value(fromspace_end):

0

else:

collect(bytes)

v = allocate(len, type)

v[0] = a0

.

.

.

v[n – 1] = an–1

produce v

}

It is important that we sequence the expose allocation pass after the removing
complex subexpressions pass, because this guarantees that the fields of the tuple
have already been evaluated to atoms prior to the call to allocate. If we were
instead to perform the allocate first and then compute the values of the fields,
those computations might themselves trigger a garbage collection, but we must not
have an allocated but uninitialized tuple on the heap during a collection!

Figure 7.10 shows the output of the expose_allocation pass on our running
example.

112 Chapter 7

atm ::= Constant(int) | Name(var)

exp ::= atm | Call(Name(�input_int�),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)

| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name(�print�),[atm])) | Expr(exp)

| Assign([Name(var)], exp)

atm ::= Constant(bool)

exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt
ú
, exp)

stmt ::= If(exp, stmt
ú
, stmt

ú
)

stmt ::= While(exp, stmt
+
, [])

atm ::= GlobalValue(var)

exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

stmt ::= Assign([Subscript(atm,atm,Store())], atm)

| Collect(int)

Lmon

Alloc ::= Module(stmt
ú
)

Figure 7.11
Lmon

Alloc
is LAlloc in monadic normal form.

atm ::= Constant(int) | Name(var) | Constant(bool)

exp ::= atm | Call(Name(�input_int�),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)

| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name(�print�),[atm])) | Expr(exp)

| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)

| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)

exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)

CTup ::= CProgram({label: stmt
ú

tail, … })

Figure 7.12
The abstract syntax of CTup, extending CIf (figure 5.8).

7.5 Explicate Control and the CTup Language

The output of explicate_control is a program in the intermediate language CTup,
for which figure 7.12 shows the definition of the abstract syntax. The new expres-
sions of CTup include allocate, accessing tuple elements, and global_value. CTup

also includes the collect statement and assignment to a tuple element. The
explicate_control pass can treat these new forms much like the other forms
that we’ve already encountered. The output of the explicate_control pass on
the running example is shown on the left side of figure 7.15 in the next section.

Tuples and Garbage Collection 113

7.6 Select Instructions and the x86Global Language

In this pass we generate x86 code for most of the new operations that are needed to
compile tuples, including Allocate, Collect, accessing tuple elements, and the Is

comparison. We compile GlobalValue to Global because the latter has a di�erent
concrete syntax (see figures 7.13 and 7.14).

The tuple read and write forms translate into movq instructions. (The +1 in the
o�set serves to move past the tag at the beginning of the tuple representation.)

lhs = tup[n]

=∆
movq tup

Õ
, %r11

movq 8(n + 1)(%r11), lhs
Õ

tup[n] = rhs

=∆
movq tup

Õ
, %r11

movq rhs
Õ
, 8(n + 1)(%r11)

The tup
Õ and rhs

Õ are obtained by translating from CTup to x86. The move of tup
Õ

to register r11 ensures that the o�set expression 8(n + 1)(%r11) contains a register
operand. This requires removing r11 from consideration by the register allocator.

Why not use rax instead of r11? Suppose that we instead used rax. Then the
generated code for tuple assignment would be

movq tup
Õ
, %rax

movq rhs
Õ
, 8(n + 1)(%rax)

Next, suppose that rhs
Õ ends up as a stack location, so patch_instructions would

insert a move through rax as follows:

movq tup
Õ
, %rax

movq rhs
Õ
, %rax

movq %rax, 8(n + 1)(%rax)

However, this sequence of instructions does not work because we’re trying to use
rax for two di�erent values (tup

Õ and rhs
Õ) at the same time!

The len operation should be translated into a sequence of instructions that read the tag of the tuple and extract the 6 bits that represent the tuple length, which are the bits starting at index 1 and going up to and including bit 6. The x86 instructions andq (for bitwise-and) and sarq (shift right) can be used to accomplish this.
We compile the allocate form to operations on the free_ptr, as shown next.

This approach is called inline allocation because it implements allocation without a
function call by simply incrementing the allocation pointer. It is much more e�cient
than calling a function for each allocation. The address in the free_ptr is the next
free address in the FromSpace, so we copy it into r11 and then move it forward by
enough space for the tuple being allocated, which is 8(len + 1) bytes because each
element is 8 bytes (64 bits) and we use 8 bytes for the tag. We then initialize the
tag and finally copy the address in r11 to the left-hand side. Refer to figure 7.8
to see how the tag is organized. We recommend using the bitwise-or operator
| and the shift-left operator « to compute the tag during compilation. The type
annotation in the allocate form is used to determine the pointer mask region of

114 Chapter 7

the tag. The addressing mode free_ptr(%rip) essentially stands for the address of
the free_ptr global variable using a special instruction-pointer-relative addressing
mode of the x86-64 processor. In particular, the assembler computes the distance
d between the address of free_ptr and where the rip would be at that moment
and then changes the free_ptr(%rip) argument to d(%rip), which at runtime will
compute the address of free_ptr.

lhs = allocate(len, TupleType([type, …]));

=∆
movq free_ptr(%rip), %r11

addq 8(len + 1), free_ptr(%rip)

movq $tag, 0(%r11)

movq %r11, lhs
Õ

The collect form is compiled to a call to the collect function in the runtime.
The arguments to collect are (1) the top of the root stack, and (2) the number
of bytes that need to be allocated. We use another dedicated register, r15, to store
the pointer to the top of the root stack. Therefore r15 is not available for use by
the register allocator.

collect(bytes)

=∆
movq %r15, %rdi

movq $bytes, %rsi

callq collect

The is comparison is compiled similarly to the other comparison operators, using
the cmpq instruction. Because the value of a tuple is its address, we can translate
is into a simple check for equality using the e condition code.

var = (atm1 is atm2) ∆
cmpq arg

2
, arg

1

sete %al

movzbq %al, var

The definitions of the concrete and abstract syntax of the x86Global language are
shown in figures 7.13 and 7.14. It di�ers from x86If only in the addition of global
variables. Figure 7.15 shows the output of the select_instructions pass on the
running example.

Tuples and Garbage Collection 115

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |

r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)

instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |

label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl

arg ::= %bytereg

cc ::= e | ne | l | le | g | ge

instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label

arg ::= label(%rip)

x86Global ::= .globl main

main: instr
ú

Figure 7.13
The concrete syntax of x86Global (extends x86If shown in figure 5.9).

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |

r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= Immediate(int) | Reg(reg) | Deref(reg,int)

instr ::= Instr(�addq�,[arg,arg]) | Instr(�subq�,[arg,arg])

| Instr(�negq�,[arg]) | Instr(�movq�,[arg,arg])

| Instr(�pushq�,[arg]) | Instr(�popq�,[arg])

| Callq(label,int) | Instr(�retq�,[]) | Jump(label)

block ::= instr
+

bytereg ::= �ah� | �al� | �bh� | �bl� | �ch� | �cl� | �dh� | �dl�

arg ::= Immediate(int) | Reg(reg) | Deref(reg,int) | ByteReg(bytereg)

cc ::= �e� | �ne� | �l� | �le� | �g� | �ge�

instr ::= Jump(label)

| Instr(�xorq�,[arg,arg]) | Instr(�cmpq�,[arg,arg])

| Instr(�set�+cc,[arg]) | Instr(�movzbq�,[arg,arg])

| JumpIf(cc,label)

arg ::= Global(label)

x86Global ::= X86Program({label : block, … })

Figure 7.14
The abstract syntax of x86Global (extends x86If shown in figure 5.10).

116 Chapter 7

block.6:

tuple.5 = allocate(1,tuple[tuple[int]])

tuple.5[0] = v1

v2 = tuple.5

tmp.0 = v2[0]

tmp.1 = tmp.0[0]

print(tmp.1)

return 0

block.7:

collect(16)

goto block.6

block.8:

tuple.3 = allocate(1,tuple[int])

tuple.3[0] = 42

v1 = tuple.3

newp.4 = (free_ptr + 16)

if newp.4 < fromspace_end:

goto block.6

else:

goto block.7

block.9:

collect(16)

goto block.8

start:

newp.2 = (free_ptr + 16)

if newp.2 < fromspace_end:

goto block.8

else:

goto block.9

∆

block.6:

movq free_ptr(%rip), %r11

addq $16, free_ptr(%rip)

movq $131, 0(%r11)

movq %r11, tuple.5

movq tuple.5, %r11

movq v1, 8(%r11)

movq tuple.5, v2

movq v2, %r11

movq 8(%r11), tmp.0

movq tmp.0, %r11

movq 8(%r11), tmp.1

movq tmp.1, %rdi

callq print_int

movq $0, %rax

jmp conclusion

block.7:

movq %r15, %rdi

movq $16, %rsi

callq _collect

jmp block.6

b0lock.8:

movq free_ptr(%rip), %r11

addq $16, free_ptr(%rip)

movq $3, 0(%r11)

movq %r11, tuple.3

movq tuple.3, %r11

movq $42, 8(%r11)

movq tuple.3, v1

movq free_ptr(%rip), newp.4

addq $16, newp.4

cmpq fromspace_end(%rip), newp.4

jl block.6

jmp block.7

block.9:

movq %r15, %rdi

movq $16, %rsi

callq collect

jmp block.8

start:

movq free_ptr(%rip), newp.2

addq $16, newp.2

cmpq fromspace_end(%rip), newp.2

jl block.8

jmp block.9

Figure 7.15
Output of explicate_control (left) and select_instructions (right) on the running example.

Tuples and Garbage Collection 117

7.7 Register Allocation

As discussed previously in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are tuples. It will be the
responsibility of the register allocator to make sure that

1. the root stack is used for spilling tuple-typed variables, and
2. if a tuple-typed variable is live during a call to the collector, it must be spilled

to ensure that it is visible to the collector.

The latter responsibility can be handled during construction of the interference
graph, by adding interference edges between the call-live tuple-typed variables and
all the callee-saved registers. (They already interfere with the caller-saved registers.)
The type information for variables is generated by the type checker for CTup, stored
in a field named var_types in the CProgram AST mode. You’ll need to propagate
that information so that it is available in this pass.

The spilling of tuple-typed variables to the root stack can be handled after graph
coloring, in choosing how to assign the colors (integers) to registers and stack loca-
tions. The CProgram output of this pass changes to also record the number of spills
to the root stack.

7.8 Generate Prelude and Conclusion

Figure 7.16 shows the output of the prelude_and_conclusion pass on the running
example. In the prelude of the main function, we allocate space on the root stack
to make room for the spills of tuple-typed variables. We do so by incrementing the
root stack pointer (r15), taking care that the root stack grows up instead of down.
For the running example, there was just one spill, so we increment r15 by 8 bytes.
In the conclusion we subtract 8 bytes from r15.

One issue that deserves special care is that there may be a call to collect prior
to the initializing assignments for all the variables in the root stack. We do not want
the garbage collector to mistakenly determine that some uninitialized variable is a
pointer that needs to be followed. Thus, we zero out all locations on the root stack
in the prelude of main. In figure 7.16, the instruction movq $0, 0(%r15) is su�cient
to accomplish this task because there is only one spill. In general, we have to clear
as many words as there are spills of tuple-typed variables. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 7.17 gives an overview of all the passes needed for the compilation of LTup.

118 Chapter 7

.globl main

main:

pushq %rbp

movq %rsp, %rbp

pushq %rbx

subq $8, %rsp

movq $65536, %rdi

movq $16, %rsi

callq initialize

movq rootstack_begin(%rip), %r15

movq $0, 0(%r15)

addq $8, %r15

jmp start

conclusion:

subq $8, %r15

addq $8, %rsp

popq %rbx

popq %rbp

retq

Figure 7.16
The prelude and conclusion for the running example.

LTup LTup Lmon

Tup Lmon

Alloc

CTup

x86
Var

Global
x86

Var

Global
x86Global x86Global

shrink remove_complex_operands expose_allocation

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 7.17
Diagram of the passes for LTup, a language with tuples.

Tuples and Garbage Collection 119

7.9 Challenge: Arrays

7.10 Further Reading

Appel (1990) describes many data representation approaches including the ones
used in the compilation of Standard ML.

There are many alternatives to copying collectors (and their bigger siblings,
the generational collectors) with regard to garbage collection, such as mark-and-
sweep (McCarthy 1960) and reference counting (Collins 1960). The strengths
of copying collectors are that allocation is fast (just a comparison and pointer
increment), there is no fragmentation, cyclic garbage is collected, and the time
complexity of collection depends only on the amount of live data and not on the
amount of garbage (Wilson 1992). The main disadvantages of a two-space copying
collector is that it uses a lot of extra space and takes a long time to perform the copy,
though these problems are ameliorated in generational collectors. Object-oriented
programs tend to allocate many small objects and generate a lot of garbage, so
copying and generational collectors are a good fit (Dieckmann and Hölzle 1999).
Garbage collection is an active research topic, especially concurrent garbage collec-
tion (Tene, Iyengar, and Wolf 2011). Researchers are continuously developing new
techniques and revisiting old trade-o�s (Blackburn, Cheng, and McKinley 2004;
Jones, Hosking, and Moss 2011; Shahriyar et al. 2013; Cutler and Morris 2015; Shi-
dal et al. 2015; Österlund and Löwe 2016; Jacek and Moss 2019; Gamari and Dietz
2020). Researchers meet every year at the International Symposium on Memory
Management to present these findings.

