
Hasp Project

Progress in Formal Verification of
Compilers: A Survey

CS410P/510 Programming Language
Compilation
Winter 2024

Formal Verification of Compilers 1

Hasp Project What?
• Compiler:

• Correctness:
 if t = compile(s)
 then behavior(t) matches behavior(s)

• for suitable definition of behavior and matching

• (Mechanized) Verification:
 give a mechanically checked proof of

correctness on all programs
Formal Verification of Compilers 2

CompilerSource Language Target Language

Hasp Project Why?
• Real compilers have bugs, but verified ones

have fewer:

Formal Verification of Compilers 3

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent. As of early 2011, the
under-development version of CompCert is the
only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-
years to the task. The apparent unbreakability of
CompCert supports a strong argument that
developing compiler optimizations within a proof
framework, where safety checks are explicit and
machine-checked, has tangible benefits for
compiler users
 - [Yang+11]

Hasp Project Why? (2)
• Verifying algorithms helps us understand

them much better
• Especially useful to tame the “optimization zoo”

• Formal verification requires formal
specification of language semantics
(behavior) and semantic preservation
(matching)
• Not easy to get right!
• Useful for many other tasks…

Formal Verification of Compilers 4

Hasp ProjectCompiler Verification in Context

Possible goals involving formal semantics of L:
• Verifying “meta-properties” of language L

• e.g. well-typed L programs don’t crash at runtime

• Verifying properties of particular L programs
• e.g. this L function computes square roots correctly

• Verifying properties of transformations on L
• e.g. this compiler from L to assembly code is correct

• In practice, there is overlap, e.g. language RTS.

Formal Verification of Compilers 5

Hasp ProjectTwo Schools of Mechanized Proof
• Interactive Provers (“proof assistants”)

• Finding proof is not fully automated
• Checking is fully automated (and trustworthy)
• Logics can be very expressive
• Examples: Coq Isabelle ACL2 PVS HOL etc.

• Automatic Provers
• Finding proof (or refutation) is fully automated
• Logics strictly limited in power (e.g. no

quantifiers)
• Can handle very large problems
• Examples: Z3 CVC Simplify etc.Formal Verification of Compilers 6

Hasp ProjectDefining Compiler Correctness
• Key idea: observable properties of source

behavior should also be properties of target
• e.g. trace of IO system calls
• note: internal behavior is generally not preserved!

• Hence, target code should only do things
source code might do (simulation/refinement)

• In practice, many tricky technical issues:
• non-termination, error behaviors, granularity of

comparison, etc.

Formal Verification of Compilers 7

Hasp ProjectVerify
or

 Check?

Two approaches to verification:
• verified transformations

• are directly proven to preserve
observable behavior

• typically by showing they preserve
(internal) invariants

• compiler must be a “white box”
(probably one we wrote)

Formal Verification of Compilers 8

Hasp ProjectVerify
or

 Check?

Two approaches to verification:
• (verified) translation validation

• on each run, check that compiler
output is correct; otherwise fail-stop

• we must hope it seldom fail-stops!
• compiler can be a “black box”

(maybe) or a “gray box”
• (must prove checker is correct)

Formal Verification of Compilers 9

• most clearly a win if
checking output is
easier than generating it

Hasp Project Toy Example in Coq
• To make these ideas concrete, consider an

extremely simple “compiler” from arithmetic
expressions
 e := x | n | e + e | e – e |e *e

 to stack-machine code
 i := Push n | Load x | Plus | Minus | Mult
• See compver.v

Formal Verification of Compilers 10

Hasp ProjectThe CompCert C Compiler
• [Leroy+06] See http://compcert.inria.fr
• Goal: A verified production-quality C compiler

usable for critical embedded software
• Source language: (most of) C
• Target language: PPC, ARM, or X86 assembler
• Coq is used for proof and to implement (most of)

the compiler itself (using extraction)
• Generates respectable target code, but does

little optimization
Formal Verification of Compilers 11

http://compcert.inria.fr

Hasp ProjectCompiler Pass Structure

Formal Verification of Compilers 12
(from CompCert web site)

Hasp ProjectCompCert Proof Structure
• Formal semantics for each IR

• “adequacy” is a concern at endpoints

• Composition of preservation proofs for
individual pipeline stages

• Mostly directly verified transformations, but
some phases use translation validation
• e.g. register allocation: much easier to validate an

allocation solution (and prove the validator
correct) than to prove precise spec for allocator

Formal Verification of Compilers 13

Hasp ProjectForward Simulation Proofs
• Correctness of most phases is proven by

establishing a simulation relation like this:

• Core of proof is defining state relation ~
• Each phase preserves the trace t of

observable events (e.g. system calls)
• This strategy relies on languages being

deterministic
Formal Verification of Compilers 14

ρ, T
~ ~

ρ’t

σ, S σ’t
src

trg
*

S = src prog
T = target prog
σ = src state
ρ = target state

Hasp ProjectCompCert Memory Model
• An important simplifying idea is to use the

same memory model for all phases
• Memory is unbounded set of distinct blocks,

each with individual bounds
• each global, stack frame, and alloc gets own block
• pointer arithmetic allowed only within blocks

• Although this simplification is a strength, it
means that assembler semantics are less
concrete than we might like…

Formal Verification of Compilers 15

Hasp Project CompCert status
• ca. 100K lines of Coq program and proof, 6

person years [as of 2018; somewhat more now]
• Some industrial users (e.g. Airbus)
• Many research groups have built on CompCert

framework
• optimizations
• weak memory models
• verified program analysis tools

Formal Verification of Compilers 16

Hasp Project Decompilation (1)
• Decompiling machine code[Myreen09,etc]

• Build (certifiably) equivalent functional program
• Each instruction becomes a sequence of updates and a

collection of side conditions
• Control flow is analyzed to discover loops

• Can use to build a translation validator
• Assuming we have effective automated equivalence

checking between source & decompiled programs
• Favors gray box approach
• Limited support for optimization

Formal Verification of Compilers 20

Hasp Project Decompilation (2)
• Translation validation of seL4 [Sewell+13]

• Used to transfer functional correctness proof from C
to ARM machine code

• Validated gcc compilation of 9500 C line kernel
• almost 100% at –O1 (1 hour); about 55% at –O2 (4.5 hours)

• C code and decompiled machine code both
converted to a graph IR (unverified)

• Equivalence of graph IRs checked by external SMT
solvers (Z3 and SONOLAR).

Formal Verification of Compilers 21

Hasp Project Summary
• Verification of (new) production-quality

compilers is well within reach today
• Verified translation validation is a promising

technique for use with existing compilers
• Many foundational and engineering research

challenges remain
• Why verify? To understand what you’re doing!

Formal Verification of Compilers 22

Hasp Project References (1)
[Yang+11] X. Yang, Y. Chen, E. Eide, J. Regehr, "Finding and Understanding

Bugs in C Compilers" PLDI 2011.

[Leroy06] X.Leroy, "Formal Certification of a compiler back-end or:
programming a compiler with a proof assistant," POPL 2006.

[Tristan09] J-B. Tristan, "Formal Verification of Translation Validators", Ph.D.
Dissertation, Univ. Paris 7, 2009.

[Demange12] D. Demange, "Semantic Foundations of Intermediate Program
Representations," Ph.D. Dissertation, ENS Cachan, 2012.

[Zhao+12] J. Zhao, S. Nagarakatte, M. Martin, S. Zdancewic, "Formalizing the
LLVM Intermediate Representation for Verified Program
Transformations", POPL 2012.

[Zhao+13] J. Zhao, S. Nagarakatte, M. Martin, S. Zdancewic, "Formal
Verification of SSA-Based Optimizations for LLVM”, PLDI 2013.

Formal Verification of Compilers 23

Hasp Project References (2)
[Tristan+11] J-B Tristan, P. Govereau, G. Morrisett, "Evaluating Value-Graph

Translation Validation for LLVM", PLDI 2011.

[Myreen09] M. Myreen, "Formal verification of machine-code programs",
PhD. Dissertation, Univ. Cambridge, 2008.

[Sewell+13] T. Sewell, M. Myreen, G. Klein, "Translation validation for a
verified OS kernel," PLDI 2013.

[McCreight+10] A. McCreight, T. Chevalier, A. Tolmach, "A certified
framework for compiling and executing garbage-collected languages,"
ICFP 2010.

Formal Verification of Compilers 24

