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What?

 Compiler:

Source Language Compiler Target Language

* Correctness:

if t = compile(s)

then behavior(t) matches behavior(s)

* for suitable definition of behavior and matching
* (Mechanized) Verification:

give a mechanically checked proof of
correctness on all programs
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Why?

* Real compilers have bugs, but verified ones
have fewer:

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent. As of early 2011, the
under-development version of CompCert is the
only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-
years to the task. The apparent unbreakability of
CompCert supports a strong argument that
developing compiler optimizations within a proof
framework, where safety checks are explicit and
machine-checked, has tangible benefits for
compiler users

- [Yang+11]
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Why? (2)

* Verifying algorithms helps us understand
them much better

* Especially useful to tame the “optimization zoo”

* Formal verification requires formal
specification of language semantics
(behavior) and semantic preservation
(matching)

* Not easy to get right!

e Useful for many other tasks...
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Compiler Verification in Context

Possible goals involving formal semantics of L:
* Verifying “meta-properties” of language L
e e.g. well-typed L programs don’t crash at runtime
* Verifying properties of particular L programs
e e.g. this L function computes square roots correctly
* Verifying properties of transformations on L

e e.g. this compiler from L to assembly code is correct

* |n practice, there is overlap, e.g. language RTS.
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Two Schools of Mechanized Proof
* |nteractive Provers (“proof assistants”)

* Finding proof is not fully automated
* Checking is fully automated (and trustworthy)

* Logics can be very expressive
* Examples: Coq Isabelle ACL2 PVS HOL etc.

* Automatic Provers
* Finding proof (or refutation) is fully automated

 Logics strictly limited in power (e.g. no
quantifiers)

* Can handle very large problems
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Defining Compiler Correctness

* Key idea: observable properties of source
behavior should also be properties of target

e e.g. trace of 10 system calls

* note: internal behavior is generally not preserved!

* Hence, target code should only do things
source code might do (simulation/refinement)
* |n practice, many tricky technical issues:

* non-termination, error behaviors, granularity of
comparison, etc.
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Verify Two approaches to verification:
e verified transformations

or
* are directly proven to preserve
Check? observable behavior

transformation  typically by showing they preserve
. . (internal) invariants

e compiler must be a “white box”
(probably one we wrote)
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Ve rify Two approaches to verification:

* (verified) translation validation

or
Check?

transformation

s = —

transformation

* on each run, check that compiler
output is correct; otherwise fail-stop

* we must hope it seldom fail-stops!

e compiler can be a “black box”
(maybe) or a “gray box”

* (must prove checker is correct)

- most clearly a win if

validator
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- checking output is
easier than generating it
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Toy Example in Coq

* To make these ideas concrete, consider an
extremely simple “compiler” from arithmetic
expressions

e=X|n|le+e|e—e]|e*e
to stack-machine code
i := Push n | Load x | Plus | Minus | Mult

* See compver.v
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The CompCert C Compiler

[Leroy+06] See

Goal: A verified production-quality C compiler
usable for critical embedded software

Source language: (most of) C
Target language: PPC, ARM, or X86 assembler

Coq is used for proof and to implement (most of)
the compiler itself (using extraction)

Generates respectable target code, but does
little optimization
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http://compcert.inria.fr

Compiler Pass Structure

[CompCert C\ Side-eﬁeaéom Clight ) type.e“m.mat'?n{C#minor]

) of expressions )loop simplifications

Optimizations: constant prop., CSE, stack allocation

inlining, tail calls, dead code

[ RTL j‘CFG construction rCminorSel} instruction [Cminorj

expr. decomp. selection

of “&" variables

register allocation (IRC)
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(from CompCert web site)
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CompCert Proof Structure

 Formal semantics for each IR
e “adequacy” is a concern at endpoints

 Composition of preservation proofs for
individual pipeline stages

* Mostly directly verified transformations, but
some phases use translation validation
* e.g. register allocation: much easier to validate an

allocation solution (and prove the validator
correct) than to prove precise spec for allocator
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Forward Simulation Proofs

Correctness of most phases is proven by
establishing a simulation relation like this:

t
g, S > O S = src prog
" SE. T = target prog
t * I y —_
0, | 30 O = src state
trg p = target state

Core of proof is defining state relation ™

Each phase preserves the trace t of
observable events (e.g. system calls)

This strategy relies on languages being
deterministic
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CompCert Memory Model

* An important simplifying idea is to use the
same memory model for all phases

* Memory is unbounded set of distinct blocks,
each with individual bounds
* each global, stack frame, and alloc gets own block
* pointer arithmetic allowed only within blocks

* Although this simplification is a strength, it

means that assembler semantics are less
concrete than we might like...
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CompCert status

* ca. 100K lines of Coqg program and proof, 6
person years [as of 2018; somewhat more now]

 Some industrial users (e.g. Airbus)

* Many research groups have built on CompCert
framework
* optimizations
 weak memory models

* verified program analysis tools
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Decompilation (1)

* Decompiling machine code[Myreen09,etc]

e Build (certifiably) equivalent functional program

e Each instruction becomes a sequence of updates and a
collection of side conditions

* Control flow is analyzed to discover loops

e Can use to build a translation validator

* Assuming we have effective automated equivalence
checking between source & decompiled programs

e Favors gray box approach
* Limited support for optimization
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Decompilation (2)

* Translation validation of selL4 [Sewell+13]

e Used to transfer functional correctness proof from C
to ARM machine code

* Validated gcc compilation of 9500 C line kernel
e almost 100% at —O1 (1 hour); about 55% at —02 (4.5 hours)

* Ccode and decompiled machine code both
converted to a graph IR (unverified)

* Equivalence of graph IRs checked by external SMT
solvers (Z3 and SONOLAR).
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Summary

e Verification of (new) production-quality
compilers is well within reach today

* Verified translation validation is a promising
technique for use with existing compilers

 Many foundational and engineering research
challenges remain

* Why verify? To understand what you’re doing!
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