Progress in Formal Verification of
Compilers: A Survey

CS410P/510 Programming Language
Compilation
Winter 2024

Portland State Formal Verification of Compilers

IIIIIIIIII

What?

 Compiler:

Source Language Compiler Target Language

* Correctness:

if t = compile(s)

then behavior(t) matches behavior(s)

* for suitable definition of behavior and matching
* (Mechanized) Verification:

give a mechanically checked proof of
correctness on all programs

Portland State Formal Verification of Compilers 2

IIIIIIIIII

Why?

* Real compilers have bugs, but verified ones
have fewer:

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent. As of early 2011, the
under-development version of CompCert is the
only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-
years to the task. The apparent unbreakability of
CompCert supports a strong argument that
developing compiler optimizations within a proof
framework, where safety checks are explicit and
machine-checked, has tangible benefits for
compiler users

- [Yang+11]

Portland State Formal Verification of Compilers

UNIVERSITY

Why? (2)

* Verifying algorithms helps us understand
them much better

* Especially useful to tame the “optimization zoo”

* Formal verification requires formal
specification of language semantics
(behavior) and semantic preservation
(matching)

* Not easy to get right!

e Useful for many other tasks...

Portland State Formal Verification of Compilers

IIIIIIIIII

Compiler Verification in Context

Possible goals involving formal semantics of L:
* Verifying “meta-properties” of language L
e e.g. well-typed L programs don’t crash at runtime
* Verifying properties of particular L programs
e e.g. this L function computes square roots correctly
* Verifying properties of transformations on L

e e.g. this compiler from L to assembly code is correct

* |n practice, there is overlap, e.g. language RTS.

Portland State Formal Verification of Compilers 5

IIIIIIIIII

Two Schools of Mechanized Proof
* |nteractive Provers (“proof assistants”)

* Finding proof is not fully automated
* Checking is fully automated (and trustworthy)

* Logics can be very expressive
* Examples: Coq Isabelle ACL2 PVS HOL etc.

* Automatic Provers
* Finding proof (or refutation) is fully automated

 Logics strictly limited in power (e.g. no
quantifiers)

* Can handle very large problems

IIIIIIIIII

Defining Compiler Correctness

* Key idea: observable properties of source
behavior should also be properties of target

e e.g. trace of 10 system calls

* note: internal behavior is generally not preserved!

* Hence, target code should only do things
source code might do (simulation/refinement)
* |n practice, many tricky technical issues:

* non-termination, error behaviors, granularity of
comparison, etc.

Portland State Formal Verification of Compilers 7

IIIIIIIIII

Verify Two approaches to verification:
e verified transformations

or
* are directly proven to preserve
Check? observable behavior

transformation typically by showing they preserve
. . (internal) invariants

e compiler must be a “white box”
(probably one we wrote)

Portland State Formal Verification of Compilers

IIIIIIIIII

Ve rify Two approaches to verification:

* (verified) translation validation

or
Check?

transformation

s = —

transformation

* on each run, check that compiler
output is correct; otherwise fail-stop

* we must hope it seldom fail-stops!

e compiler can be a “black box”
(maybe) or a “gray box”

* (must prove checker is correct)

- most clearly a win if

validator

Portland State

IIIIIIIIII

- checking output is
easier than generating it

Formal Verification of Compilers 9

Toy Example in Coq

* To make these ideas concrete, consider an
extremely simple “compiler” from arithmetic
expressions

e=X|n|le+e|e—e]|e*e
to stack-machine code
i := Push n | Load x | Plus | Minus | Mult

* See compver.v

Portland State Formal Verification of Compilers 10

IIIIIIIIII

The CompCert C Compiler

[Leroy+06] See

Goal: A verified production-quality C compiler
usable for critical embedded software

Source language: (most of) C
Target language: PPC, ARM, or X86 assembler

Coq is used for proof and to implement (most of)
the compiler itself (using extraction)

Generates respectable target code, but does
little optimization

Portland State Formal Verification of Compilers 11

IIIIIIIIII

http://compcert.inria.fr

Compiler Pass Structure

[CompCert C\ Side-eﬁeaéom Clight) type.e“m.mat'?n{C#minor]

) of expressions)loop simplifications

Optimizations: constant prop., CSE, stack allocation

inlining, tail calls, dead code

[RTL j‘CFG construction rCminorSel} instruction [Cminorj

expr. decomp. selection

of “&" variables

register allocation (IRC)
calling conventions

linearization) B layout of
L | —[.[j
[J of the CFG Linear J stack frames Mach

tion

[Asm X86] [AsmARMJ (Asm PPC]

(from CompCert web site)
Portland State Formal Verification of Compilers 12

UNIVERSITY

CompCert Proof Structure

 Formal semantics for each IR
e “adequacy” is a concern at endpoints

 Composition of preservation proofs for
individual pipeline stages

* Mostly directly verified transformations, but
some phases use translation validation
* e.g. register allocation: much easier to validate an

allocation solution (and prove the validator
correct) than to prove precise spec for allocator

Portland State Formal Verification of Compilers 13

IIIIIIIIII

Forward Simulation Proofs

Correctness of most phases is proven by
establishing a simulation relation like this:

t
g, S > O S = src prog
" SE. T = target prog
t * I y —_
0, | 30 O = src state
trg p = target state

Core of proof is defining state relation ™

Each phase preserves the trace t of
observable events (e.g. system calls)

This strategy relies on languages being
deterministic

Portland State Formal Verification of Compilers

IIIIIIIIII

14

CompCert Memory Model

* An important simplifying idea is to use the
same memory model for all phases

* Memory is unbounded set of distinct blocks,
each with individual bounds
* each global, stack frame, and alloc gets own block
* pointer arithmetic allowed only within blocks

* Although this simplification is a strength, it

means that assembler semantics are less
concrete than we might like...

Portland State Formal Verification of Compilers 15

IIIIIIIIII

CompCert status

* ca. 100K lines of Coqg program and proof, 6
person years [as of 2018; somewhat more now]

 Some industrial users (e.g. Airbus)

* Many research groups have built on CompCert
framework
* optimizations
 weak memory models

* verified program analysis tools

Portland State Formal Verification of Compilers 16

IIIIIIIIII

Decompilation (1)

* Decompiling machine code[Myreen09,etc]

e Build (certifiably) equivalent functional program

e Each instruction becomes a sequence of updates and a
collection of side conditions

* Control flow is analyzed to discover loops

e Can use to build a translation validator

* Assuming we have effective automated equivalence
checking between source & decompiled programs

e Favors gray box approach
* Limited support for optimization

Portland State Formal Verification of Compilers 20

IIIIIIIIII

Decompilation (2)

* Translation validation of selL4 [Sewell+13]

e Used to transfer functional correctness proof from C
to ARM machine code

* Validated gcc compilation of 9500 C line kernel
e almost 100% at —O1 (1 hour); about 55% at —02 (4.5 hours)

* Ccode and decompiled machine code both
converted to a graph IR (unverified)

* Equivalence of graph IRs checked by external SMT
solvers (Z3 and SONOLAR).

Portland State Formal Verification of Compilers 21

IIIIIIIIII

Summary

e Verification of (new) production-quality
compilers is well within reach today

* Verified translation validation is a promising
technique for use with existing compilers

 Many foundational and engineering research
challenges remain

* Why verify? To understand what you’re doing!

Portland State Formal Verification of Compilers 22

IIIIIIIIII

References (1)

[Yang+11] X. Yang, Y. Chen, E. Eide, J. Regehr, "Finding and Understanding
Bugs in C Compilers" PLDI 2011.

[Leroy06] X.Leroy, "Formal Certification of a compiler back-end or:
programming a compiler with a proof assistant," POPL 2006.

[Tristan09] J-B. Tristan, "Formal Verification of Translation Validators", Ph.D.
Dissertation, Univ. Paris 7, 20009.

[Demangel2] D. Demange, "Semantic Foundations of Intermediate Program
Representations,” Ph.D. Dissertation, ENS Cachan, 2012.

[Zhao+12] J. Zhao, S. Nagarakatte, M. Martin, S. Zdancewic, "Formalizing the
LLVM Intermediate Representation for Verified Program
Transformations", POPL 2012.

[Zhao+13] J. Zhao, S. Nagarakatte, M. Martin, S. Zdancewic, "Formal
Verification of SSA-Based Optimizations for LLVM”, PLDI 2013.

Portland State Formal Verification of Compilers

IIIIIIIIII

23

References (2)

[Tristan+11] J-B Tristan, P. Govereau, G. Morrisett, "Evaluating Value-Graph
Translation Validation for LLVM", PLDI 2011.

[Myreen09] M. Myreen, "Formal verification of machine-code programs”,
PhD. Dissertation, Univ. Cambridge, 2008.

[Sewell+13] T. Sewell, M. Myreen, G. Klein, "Translation validation for a
verified OS kernel," PLDI 2013.

[McCreight+10] A. McCreight, T. Chevalier, A. Tolmach, "A certified
framework for compiling and executing garbage-collected languages,"
ICFP 2010.

Portland State Formal Verification of Compilers

IIIIIIIIII

24

