Markets and Malware:
Detecting Malicious and Privacy-stealing Apps in Smartphone

Marketplaces

Shaun Brandt
CS 591
11/26/2012




Introduction

Smartphones have quickly managed to become the most
dominant portion of the wireless device market

- And the computing market in general, when combined
with tablet devices

Hundreds of millions of devices are already active, and
tens of millions more are activated every year

'‘Apps' are one of the main attractions to smartphone
buyers, and they have collectively downloaded billions!

Apps = executable code = potential for malware




Introduction, continued

* There are many smartphone platforms:
- Apple: I0S
Google: Android
Microsoft: Windows Phone
Research in Motion: Blackberry OS
Others: Symbian, WebOS, MeeGo

* Apple and Google have, by far, the largest marketshare, and
the two (especially the latter) are the focus of my paper.




Why target smartphones?

e Contact information

- Phone numbers, e-mail addresses, even physical
addresses In some cases

e Access to services that can make attackers money!

- Phone calls to international numbers
- SMS messages to premium numbers and short codes
- The user won't even notice until they get their bill

e Device serial numbers (IMEIS)




EXxisting security infrastructure

(NOTE: my paper covers the topic much more extensively)

« Two different models
* Apple's model for IOS devices:

- Walled garden (their marketplace or none)
Only licensed developers can submit apps
Apps are checked before publication
Apps are digitally signed
Apps' ability to read and write files are tightly controlled




EXxisting security infrastructure

» Google's model for Android devices:

Open market (many third-party marketplaces)

Apps are sanity checked, but not exhaustively checked for
malicious behavior

Only apps that declare intent to use dangerous features can
call the functions that provide them

Account segregation (different user) for each app
Java VM / sandbox

The user has primary responsibility — a list of required
dangerous permissions is shown at install time, and the user
must accept all of them




Active research

Detecting malware and preventing privacy leaks are both
areas of active research

Most research concentrates on Android (since it's open
source)

Research Is concentrated in a few areas:
Detection as part of the app submission process
Detection at install time

Detection at run time
Enhancement of existing security infrastructure




Detection at app submission time

* Applnspector

From the paper 'Vision: Automated Security Validation
of Mobile Apps at App Markets'

Developed by Peter Gilbert et al.

Extension of previous work done on a tool called
TaintDroid

Uses a technique called dynamic taint analysis to
track the flow of private information through an app,
from the 'source' (address book, GPS location), to a
'sink’ (the external network)




Applnspector

 Dynamic taint analysis

When sensitive data is accessed, that data has a tag
attached to it

As the data is moved along through the code, the tag
persists

If the tagged data leaves the device through a sink,
then this is considered a potential private data leak

The code is inspected symbolically and through actual
execution (in a virtual machine)




Applnspector, continued

* Applnspector is an off-line version of the TaintDroid tool,
designed to be run by the vendor as a step of the app
submission process

- TaintDroid was made to run in real-time, tracking
private data flows on the device itself




PIOS

 From the paper 'PiOS: Detecting Privacy Leaks in I0S
Applications' by Manuel Egele et al.

 PIOS is a tool that behaves in a similar way to
Applnspector, but for IOS devices

- Analysis is only done statically
— Data Is traced from source to sink

 However, 10S apps are usually written in Objective C,
which makes tracking data difficult...




PIOS, continued

» Analysis requires that the tool can create a control flow
graph (CFG) to trace through execution, but:

- Objective C uses a message-passing interface instead
of direct function calls or structures like vtables

- All messages are dispatched through a single
function!

— Applications from the official marketplace are
encrypted and digitally signed

 Even with these problems, the team was able to develop
PiOS




PIOS, continued

Encrypted apps were grabbed at execution time with a
jailbroken phone and debugger (while they were in a
decrypted state)

Apps from Cydia (a third-party marketplace) were also
used

The disassembled apps and binary header information
were used to infer class structure and create the CFG

Static analysis could then be done, linking sources to
sinks




PIOS, continued

e Tested on 1400 apps — most were found to respect
private data

 Even most apps from the Cydia marketplace (which
Apple has no control over) were well-behaved!




Other papers

« Malicious app detection at install time

— Kirin: an infrastructure to describe 'dangerous’
combinations of permissions on Android phones, and
block installation

 Example: an app that wants to check phone state,
record audio and connect to the Internet may be a
phone call recording/monitoring app

 The paper describes a security policy, and through
Kirin, provides a method of enforcing it




Other papers, continued

« Offloading malware detection to the cloud (yes, the
cloud...)

 Paranoid Android

- The idea: log device behavior, transmit over the
network, and replay all actions on a VM clone of the
device living on a server somewhere

- Only monitors activities that cause non-determinism,
to save space

- Analysis can then be done using methods that are too
slow to do in real time




Other papers, continued

e You may be asking 'but isn't transmitting all of the
phone's activity to a remote server a breach of
confidentiality?'

- The target market is corporate / military environments

- 'Confidentiality' and 'integrity' are more important to
the company or agency that owns the device (and
their data), not the user




Other papers, continued

 Enhancing Android's existing permissions infrastructure

TISSA — a tool developed by Yajin Zhou et al.
Adds new finer-grained permissions

More importantly, allows individual permissions to be
granted or denied at runtime (as opposed to the all-or-
nothing, install-time only option that Android currently
offers)

Can be configured to return bogus data in place of real
data




Other papers, continued

» Detecting modified apps in third-party marketplaces

- Popular apps are frequently repackaged and put on
unofficial marketplaces

- They may contain malware, or modifications to provide
revenue to the person who did the repackaging

 DroidMOSS is a tool that uses fuzzy hashing to
fingerprint apps. Apps that are 'mostly' the same can be
detected in this manner




Other papers, continued

» Tested on 6 third-party marketplaces: between 5 and 13
percent of apps were repackaged

- Some redirected ad affiliate credentials to give
revenue to the repackager

- Some add ads to apps that previously didn't have
them

- A few added malware packages (mainly to send
messages to premium SMS numbers)




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

