
Session Key Establishment

3/28/12 CIS/TCOM 551 3

3/28/12 CIS/TCOM 551 4

Distribution Center Setup
•  A wishes to communicate with B.
•  T (trusted 3rd party) provides session keys.
•  T has a key KAT in common with A and a key KBT in

common with B.
•  A authenticates T using a nonce nA and obtains a session

key from T.
•  A authenticates to B and transports the session key

securely.

3/28/12 CIS/TCOM 551 5

Needham-Schroeder Protocol
1.  A → T : A, B, nA

2.  T → A : KAT{KS, nA, B, KBT{KS, A} }
 A decrypts with KAT and checks nA and B. Holds KS for future
correspondence with B.

3.  A → B : KBT{KS, A}
 B decrypts with KBT.

4.  B → A : KS{nB}
 A decrypts with KS.

5.  A → B : KS{nB – 1}
 B checks nB-1.

3/28/12 CIS/TCOM 551 6

Attack Scenario 1
1.  A → T : A, B, nA

2.  T → C (A) : KAT{k, nA, B, KBT{KS, A}}
 C is unable to decrypt the message to A; passing it
along unchanged does no harm. Any change will be
detected by A.

3/28/12 CIS/TCOM 551 7

Attack Scenario 2
1.  A → C (T) : A, B, nA

2.  C (A) → T : A, C, nA

3.  T → A : KAT{KS, nA, C, KCT{KS, A}}

Rejected by A because the message contains C rather
than B.

3/28/12 CIS/TCOM 551 8

Attack Scenario 3
1.  A → C (T) : A, B, nA

2.  C → T : C, B, nA

3.  T → C : KCT{KS, nA, B, KBT{KS, C}}

4.  C (T) → A : KCT{KS, nA, B, KBT{KS, C}}

A is unable to decrypt the message.

3/28/12 CIS/TCOM 551 9

Attack Scenario 4
1.  C → T : C, B, nA

2.  T → C : KCT{KS, nA, B, KBT{KS, C}}
3.  C (A) → B : KBT{KS, C}

B will see that the purported origin (A)
does not match the identity indicated
by the distribution center.

3/28/12 CIS/TCOM 551 10

Valid Attack
•  The attacker records the messages on the network

–  in particular, the messages sent in step 3

•  Consider an attacker that manages to get an old session
key KS.

•  That attacker can then masquerade as Alice:
–  Replay starting from step 3 of the protocol, but using the message

corresponding to KS.

•  Could be prevented with time stamps.

Kerberos Key Management

3/28/12 CIS/TCOM 551 11

3/28/12 CIS/TCOM 551 12

Kerberos
•  Key exchange protocol developed at MIT in the late 1980’s
•  Central server provides “tickets”
•  Tickets – (act as capabilities):

–  Unforgeable
–  Nonreplayable
–  Authenticated
–  Represent authority

•  Designed to work with NFS (network file system)
•  Also saves on authenticating for each service

–  e.g. with ssh.

3/28/12 CIS/TCOM 551 13

Kerberos

User

Kerberos
Server

Ticket-granting
server

File
Server

Other
Server

A
ut

he
nt

ic
at

io
n

TG
T

Service Request

Service ticket

Unique keys KFG, etc.

U

S

G

F

3/28/12 CIS/TCOM 551 14

Kerberos Login
•  U = User’s machine
•  S = Kerberos Server

–  Has a database of user "passwords": userID → kpwd
•  G = Ticket granting server

•  U → S : userID, G, nU
•  S → U : kpwd{nU, KUG}, KSG{T(U,G)}
•  S → G : KSG{KUG, userID}

•  T(X,Y) = X, Y, L, KXY

Kerberos ticket
granting ticket

Ticket lifetime

Session key

3/28/12 CIS/TCOM 551 15

Kerberos Service Request
•  Requesting a service from server F

•  U → G : KUG{userID,timestamp}, KSG{T(U,G)}, req(F), n’U

•  G → U : KUG{KUF,n’U}, KFG{T(U,F)}

•  U → F : KUF{userID,timestamp}, KFG{T(U,F)}

3/28/12 CIS/TCOM 551 16

Kerberos Benefits
•  Distributed access control

–  No passwords communicated over the network
•  Cryptographic protection against spoofing

–  All accesses mediated by G (ticket granting server)
•  Limited period of validity

–  Servers check timestamps against ticket validity
–  Limits window of vulnerability

•  Timestamps prevent replay attacks
–  Servers check timestamps against their own clocks to ensure “fresh” requests

•  Mutual authentication
–  User sends nonce challenges

3/28/12 CIS/TCOM 551 17

Kerberos Drawbacks
•  Requires available ticket granting server

–  Could become a bottleneck
–  Must be reliable

•  All servers must trust G, G must trust servers
–  They share unique keys

•  Kerberos requires synchronized clocks
–  Replay can occur during validity period
–  Not easy to synchronize clocks

•  User’s machine could save & replay passwords
–  Password is a weak spot

•  Kerberos does not scale well
–  Hard to replicate authentication server and ticket granting server
–  Duplicating keys is bad, extra keys = more management

