CS 457/557: Functional
Languages

Week 6: Haskell Type Checking

Mark P Jones and Andrew Tolmach
Portland State University

Haskell’s Type System

@ Haskell’s type system is based on seminal
work by (among others):

Haskell Curry and Robert Feys (1958)

Roger Hindley (1969)

Robin Milner (1978)

Luis Damas (1985)

Philip Wadler and Stephen Blott (1989)

Types in Haskell

@ Type Safety:

m If an expression E has type T, then
evaluating E will produce a value of type T

= “Well-typed programs do not go
wrong” (Robin Milner)

= No need to check types of values at run-
time (a performance benefit)

... continued

@ Flexibility:

= Polymorphism allows the definition of
functions that work uniformly over many
different types of value

= Higher-order functions make it possible to
capture common patterns of computation
and/or custom control structures

... continued

@ Type Inference:

= There is an algorithm that can be used to
determine if a term/program is well-typed

= Any well-typed expression has a most
general (principal) type from which all
other possible types can be obtained

m Explicit types can be provided as useful
documentation, but are (usually) not
required

... continued

@ Ease of Implementation:

= [ype checking algorithm is relatively
straightforward to implement

= Polymorphic functions are relatively easy
to implement

® Time to look at some details ...

Type Inference and
Polymorphism

Type Inference

€ How do you figure out the type of an expression?
€ Known functions and constants have known

types:

= True, False :: Bool

= hot :: Bool -> Bool

s (&&) :: Bool -> Bool -> Bool

@ Applications are type checked using the rule:
s If Tand S are types,
= €, is an expression of type T -> S,
= &, iS an expression of type T,
= Then e; e, is an expression of type S

... continued

€ What about function definitions or lambda
expressions?

@® Example: What is the type of the following
function? substxyz=xz(y z)

€ And how would we expect GHC to figure it out?

@ Inspiration: In math, we use variables as
placeholders for unknown values ...

s Example: 6x + 8y = 48

Typing subst subst xy z = x z (y 2)

@ In the same way, we can use type variables as
placeholders for unknown types ...

@ To start, pick three “fresh” type variables to
represent the type of values in the three

parameters
m X..d
m Yy .. b
m Z..C

@ If there is any relationship between a, b, and ¢,
we'll discover that as we proceed.
10

... continued subst xy z = x z (y 2)
Consider the expression X Z (Y 2):

@ Becausey is applied to z, we can infer that b must be a
function type b = ¢ -> d for some type d

@ Similarly, x is applied to z, so: Thus x z (y 2) :: f
a = C -> e for some type e where:
mX:ia,yiib z:ic
@ Finally, (x z) is applied to (y z), so: ma=cCc->e
e = d -> f for some type f =b=c->d
@ me=d->f

mXic->d->f
my:iiCc->d 11
mZ::C

... continued subst xy z = x z (y 2)

@ If we can show e :: t when we assume that x :: s,
then the function \x -> e has type s -> t

@ For our example:
s Assumingx::c->d->f, y::c->d,andz::c..
= ... we have shownthat xz(yz) ::f

€ Hence:
(\xyz->xz(yz)
sec->d->fH)->(c->d)->c->f
Or, equivalently:
subst :: (c->d->f)->(c->d)->c->f

12

Generalization

€® We made all this progress without assuming
anything about types ¢, d, and f

@ So, if we picked any types X, Y, and Z, then subst
could also be used as a value of type

X->Y->Z2)->(X->Y)->X->Z

@ In fact, for all choices of a, b, and ¢, we could
use subst as a value of type

(@->b->c)->(@a->b)->a->c

@® We've just made the argument that:

subst :: Va. Vb. Vc.
(@->b->¢)->(@->b)->a->c

Type Variables

@ A type variable begins with a lower case letter

&

N4

and represents an arbitrary type

A type expression that doesn’t include variables is
sometimes called a monotype

A type expression that includes type variables is
sometimes called a type scheme because it
represents a family of types

E.g., (a -> a) represents a set of types that
includes (Int->Int), (Bool->Bool), ([Int]->[Int])
and ((Int -> Bool) -> (Int -> Bool)) ...

but not Int -> Bool 14

Quantifier Notation

® We sometimes write type schemes using “forall”
quantifiers: Va.a-> a

= We can write this in actual code as foralla . a —> a if we
use the ScopedTypedVariables extension in GHC
@ This emphasizes the fact that this type works “for
all” choices of the type a.

@ It is possible to use multiple quantifiers:
Va.Vb.a->b->a

@ If e :: Ya. T(a), then we can instantiate the
quantified variable a with any other type t, and
use e as a value of type T(t)

15

Examples

® Example: we can instantiate id :: Va. a -> a to obtain:
= id :: Bool -> Bool
= id :: Char -> Char
= id :: (a,b) -> (a,b)

€ Example: we can instantiate
subst :: Va.Vb.Vc.(a->b->c)->(a->b)->a->c
to obtain:
= subst (&&) not True :: Bool
= subst (+) (2*) 3 :: Int
= subst (:) (\x-> [x,x])id :: ?
s subst map (\f->f.f) True::?

16

Aside: Types are Logical

@ Typing Function Application
f::A->B X i A
fx::B

@ Typing Lambda Expressions

Assuming x :: A e::B
(\x->e)::A->B

17

Aside: Types are Logical

@ Typing Function Application
f::A->B X i A
fx::B

@ Typing Lambda Expressions

Assuming x :: A e::B
(\x->e)::A->B

18

Aside: Types are Logical
@® TypingFunction-Application Modus Ponens

A->B A
B
@® Typing-Lambda-Expressions Deduction Theorem
Assuming A B

A->B

19

Aside: Types are Logical

Hypothetical Syllogism:
ifA->BandB->C, then A->C

Proof: Letg:: A->Bandf::B->C

Assume XA

Apply g: gx: B

Apply f: f(gx)::C

Discharge assumption: WX->f(@gx)::A->C

Composition \fgx->f (g x)
2 (B->C)->(A->B)->(A->0)

20

Type Annotations

@ Haskell allows us to add type signatures to
function definitions
id ra->a
id X = X
@ Type variables on the right of a :: are assumed
to be implicitly bound by a V

@ Haskell also allows type annotations on
expressions:
(X->x):ra->a
€ And on variables bound in patterns
(\(x::Int) -> x+1) :: Int -> Int

but only if ScopedTypedVariables extension is enableczl1

... continued

@ It' s ok to declare any type that is an instance of
the principal type:

id::a->a
id::b->b

id :: (a,b) -> (a,b)
id :: Int -> Int

id :: (Int, [b->Int]) -> (Int, [b -> Int])
id:: (@a->a)->(a->a)

@® Uses of the function will be restricted to the
declared type.

22

... continued

@ It is an error to declare a type that is not an
instance of the principal type:
id :: Int-> Bool
id :: Bool -> [Bool]
id :ta->b

@ None of these types will be accepted

€ None of these types is consistent with the
behavior of the id function

23

... continued

@ It is often useful to write types in code as a form
of documentation

€ But the types can be inferred automatically if they
are omitted

@ The Haskell typechecker will always choose the
most general type possible

24

Type Errors

Type errors occur when the constraints that we
obtain cannot be solved:

@ if True then False else 'a'
s Bool does not match Char

@ \X-> XX

= “Occurs check: cannot construct the infinite type: a ~
a->b”

= ifx::a thena=a->b, forsomeb

= Hencea=(a->b)->b=((a->b)->b)->b=(((a
->b)->b)->b)->b=..

25

“Let Polymorphism™

@ Haskell will infer polymorphic types for functions
defined at the top-level

€ and also in local definitions (i.e., in a let or
where clause)

€® Example: What is the type of this function?
fxy=letmiz=2z in (mix, miy)

26

“Lambda-bound Variables”

@ A limitation of the Haskell type system:

= Polymorphic values cannot be passed as function
arguments

€ Example:
= (id 'a’, id True) :: (Char, Bool)
= But \id -> (id 'a’, id True) is not well-typed

27

Subtleties (1)

@ Consider the following definition:

fx=letgy = [X, Y]
in gXx

€ What is the type of f?

€ What is the type of g?

28

Subtleties (2)

® Su

ppose that we define:
DOX i a->[a]

DOX X = [X]

@ What is the type of:

box (box True)?

@ What is the type of:

(\b -> b (bTrue)) box?

29

Subtleties (3)

@ Haskell will not accept the following
function definition:

fxs = null xs || f[xs]

@ But it will accept the definition if we add a
type signature:

f :: [a] -> Bool

€ What' s going on here?
@ ("polymorphic recursion™)

30

Pathologies

@ Consider the following example:
h =f4id
where
pairxyf=fxy
fly=paryy
f2y =f1(fly)
f3y=12(f2y)
f4y =f3(f3y)
€ What is the type of h?

€ What happens if we extend the pattern to
f57?

31

Summary

@ The Haskell/Hindley-Milner type system hits a
sweet spot providing safety, flexibility, type
inference and ease of implementation

@ Every well-typed term has a most general type
that can be inferred automatically

@ There are some subtleties and pathological bad
behavior ... but, overall:
= The type system works well in practice
m [t is fairly intuitive and flexible

= [t is hard to live without when you go back to C/Java/C#/
PHP/...

32

