
1

CS 457/557: Functional
Languages

Week 6: Haskell Type Checking

Mark P Jones and Andrew Tolmach

Portland State University

2

Haskell’s Type System
  Haskell’s type system is based on seminal
work by (among others):
!  Haskell Curry and Robert Feys (1958)
!  Roger Hindley (1969)
!  Robin Milner (1978)
!  Luis Damas (1985)
!  Philip Wadler and Stephen Blott (1989)
!  …

3

Types in Haskell

 Type Safety:
!  If an expression E has type T, then

evaluating E will produce a value of type T

!  “Well-typed programs do not go
wrong” (Robin Milner)

!  No need to check types of values at run-
time (a performance benefit)

4

… continued

 Flexibility:
!  Polymorphism allows the definition of

functions that work uniformly over many
different types of value

!  Higher-order functions make it possible to
capture common patterns of computation
and/or custom control structures

5

… continued

 Type Inference:
!  There is an algorithm that can be used to

determine if a term/program is well-typed

!  Any well-typed expression has a most
general (principal) type from which all
other possible types can be obtained

!  Explicit types can be provided as useful
documentation, but are (usually) not
required

6

… continued

 Ease of Implementation:
!  Type checking algorithm is relatively

straightforward to implement

!  Polymorphic functions are relatively easy
to implement

  Time to look at some details …

Type Inference and
Polymorphism

8

Type Inference
  How do you figure out the type of an expression?

  Known functions and constants have known
types:
!  True, False :: Bool
!  not :: Bool -> Bool
!  (&&) :: Bool -> Bool -> Bool
!  …

  Applications are type checked using the rule:
!  If T and S are types,
!  e1 is an expression of type T -> S,
!  e2 is an expression of type T,
!  Then e1 e2 is an expression of type S

9

… continued
  What about function definitions or lambda
expressions?

  Example: What is the type of the following
function? subst x y z = x z (y z)

  And how would we expect GHC to figure it out?

  Inspiration: In math, we use variables as
placeholders for unknown values …
!  Example: 6x + 8y = 48

10

Typing subst
  In the same way, we can use type variables as
placeholders for unknown types …

  To start, pick three “fresh” type variables to
represent the type of values in the three
parameters
!  x :: a
!  y :: b
!  z :: c

  If there is any relationship between a, b, and c,
we’ll discover that as we proceed.

subst x y z = x z (y z)

11

… continued
Consider the expression x z (y z):

  Because y is applied to z, we can infer that b must be a
function type b = c -> d for some type d

  Similarly, x is applied to z, so:
 a = c -> e for some type e

  Finally, (x z) is applied to (y z), so:
 e = d -> f for some type f

subst x y z = x z (y z)

Thus x z (y z) :: f
where:

!  x :: a, y :: b, z :: c
!  a = c -> e
!  b = c -> d
!  e = d -> f

!  x :: c -> d -> f
!  y :: c -> d
!  z :: c

12

  If we can show e :: t when we assume that x :: s,
then the function \x -> e has type s -> t

  For our example:
!  Assuming x :: c -> d -> f, y :: c -> d, and z :: c …
!  … we have shown that x z (y z) :: f

  Hence:
 (\x y z -> x z (y z))
 :: (c -> d -> f) -> (c -> d) -> c -> f
 Or, equivalently:
 subst :: (c -> d -> f) -> (c -> d) -> c -> f

subst x y z = x z (y z) … continued

13

Generalization
  We made all this progress without assuming
anything about types c, d, and f

  So, if we picked any types X, Y, and Z, then subst
could also be used as a value of type
 (X -> Y -> Z) -> (X -> Y) -> X -> Z

  In fact, for all choices of a, b, and c, we could
use subst as a value of type
 (a -> b -> c) -> (a -> b) -> a -> c

  We’ve just made the argument that:
 subst :: ∀a. ∀b. ∀c.

 (a -> b -> c) -> (a -> b) -> a -> c

14

Type Variables
  A type variable begins with a lower case letter
and represents an arbitrary type

  A type expression that doesn’t include variables is
sometimes called a monotype

  A type expression that includes type variables is
sometimes called a type scheme because it
represents a family of types

  E.g., (a -> a) represents a set of types that
includes (Int->Int), (Bool->Bool), ([Int]->[Int])
and ((Int -> Bool) -> (Int -> Bool)) …
but not Int -> Bool

15

Quantifier Notation
  We sometimes write type schemes using “forall”
quantifiers: ∀a. a -> a
!  We can write this in actual code as forall a . a –> a if we

use the ScopedTypedVariables extension in GHC
  This emphasizes the fact that this type works “for
all” choices of the type a.

  It is possible to use multiple quantifiers:
 ∀a. ∀b. a -> b -> a

  If e :: ∀a. T(a), then we can instantiate the
quantified variable a with any other type t, and
use e as a value of type T(t)

16

Examples
  Example: we can instantiate id :: ∀a. a -> a to obtain:

!  id :: Bool -> Bool
!  id :: Char -> Char
!  id :: (a,b) -> (a,b)
!  …

  Example: we can instantiate
subst :: ∀a. ∀b. ∀c. (a -> b -> c) -> (a -> b) -> a -> c
to obtain:
!  subst (&&) not True :: Bool
!  subst (+) (2*) 3 :: Int
!  subst (:) (\x -> [x,x]) id :: ?
!  subst map (\f -> f . f) True :: ?

17

Aside: Types are Logical
  Typing Function Application

  Typing Lambda Expressions

f :: A -> B x :: A
f x :: B

Assuming x :: A e :: B
(\x -> e) :: A -> B

18

Aside: Types are Logical
  Typing Function Application

  Typing Lambda Expressions

f :: A -> B x :: A
f x :: B

Assuming x :: A e :: B
(\x -> e) :: A -> B

19

Aside: Types are Logical
  Typing Function Application Modus Ponens

  Typing Lambda Expressions Deduction Theorem

f :: A -> B x :: A
f x :: B

Assuming x :: A e :: B
(\x -> e) :: A -> B

20

Aside: Types are Logical
Hypothetical Syllogism:

if A -> B and B -> C, then A -> C

Proof: Let g :: A -> B and f :: B -> C
 Assume x :: A
 Apply g: g x :: B
 Apply f: f (g x) :: C
 Discharge assumption: \x -> f (g x) :: A -> C

Composition \f g x -> f (g x)
 :: (B -> C) -> (A -> B) -> (A -> C)

21

Type Annotations
  Haskell allows us to add type signatures to
function definitions

 id :: a -> a
 id x = x

  Type variables on the right of a :: are assumed
to be implicitly bound by a ∀

  Haskell also allows type annotations on
expressions:

 (\x -> x) :: a -> a

  And on variables bound in patterns
 (\(x::Int) -> x+1) :: Int -> Int

 but only if ScopedTypedVariables extension is enabled

22

… continued
  It’s ok to declare any type that is an instance of
the principal type:

 id :: a -> a
 id :: b -> b
 id :: (a,b) -> (a,b)
 id :: Int -> Int
 id :: (Int, [b->Int]) -> (Int, [b -> Int])
 id :: (a -> a) -> (a -> a)

  Uses of the function will be restricted to the
declared type.

23

… continued
  It is an error to declare a type that is not an
instance of the principal type:

 id :: Int -> Bool
 id :: Bool -> [Bool]
 id :: a -> b

  None of these types will be accepted

  None of these types is consistent with the
behavior of the id function

24

… continued
  It is often useful to write types in code as a form
of documentation

  But the types can be inferred automatically if they
are omitted

  The Haskell typechecker will always choose the
most general type possible

25

Type Errors
Type errors occur when the constraints that we
obtain cannot be solved:

  if True then False else 'a'
!  Bool does not match Char

  \x -> x x
!  “Occurs check: cannot construct the infinite type: a ~

a -> b”
!  if x :: a, then a = a -> b, for some b
!  Hence a = (a -> b) -> b = ((a -> b) -> b) -> b = (((a

-> b) -> b) -> b) -> b = …

26

“Let Polymorphism”
  Haskell will infer polymorphic types for functions
defined at the top-level

  and also in local definitions (i.e., in a let or
where clause)

  Example: What is the type of this function?
 f x y = let mi z = z in (mi x, mi y)

27

“Lambda-bound Variables”

  A limitation of the Haskell type system:
!  Polymorphic values cannot be passed as function

arguments

  Example:
!  (id 'a', id True) :: (Char, Bool)
!  But \id -> (id 'a', id True) is not well-typed

28

Subtleties (1)

  Consider the following definition:

 f x = let g y = [x, y]
 in g x

 What is the type of f?

 What is the type of g?

29

Subtleties (2)

  Suppose that we define:
 box :: a -> [a]
 box x = [x]

 What is the type of:
 box (box True)?

 What is the type of:
 (\b -> b (bTrue)) box?

30

Subtleties (3)

  Haskell will not accept the following
function definition:
 f xs = null xs || f [xs]

  But it will accept the definition if we add a
type signature:
 f :: [a] -> Bool

 What’s going on here?
  (“polymorphic recursion”!)

31

Pathologies
  Consider the following example:

h = f4 id
 where
 pair x y f = f x y
 f1 y = pair y y
 f2 y = f1 (f1 y)
 f3 y = f2 (f2 y)
 f4 y = f3 (f3 y)
 What is the type of h?
 What happens if we extend the pattern to
f5?

32

Summary
  The Haskell/Hindley-Milner type system hits a
sweet spot providing safety, flexibility, type
inference and ease of implementation

  Every well-typed term has a most general type
that can be inferred automatically

  There are some subtleties and pathological bad
behavior … but, overall:
!  The type system works well in practice
!  It is fairly intuitive and flexible
!  It is hard to live without when you go back to C/Java/C#/

PHP/…

