CS 457/557: Functional Languages

Week 6: Haskell Type Checking

Mark P Jones and Andrew Tolmach Portland State University

Haskell's Type System

- * Haskell's type system is based on seminal work by (among others):
 - Haskell Curry and Robert Feys (1958)
 - Roger Hindley (1969)
 - Robin Milner (1978)
 - Luis Damas (1985)
 - Philip Wadler and Stephen Blott (1989)
 - ...

Types in Haskell

- Type Safety:
 - If an expression E has type T, then evaluating E will produce a value of type T
 - "Well-typed programs do not go wrong" (Robin Milner)
 - No need to check types of values at runtime (a performance benefit)

Flexibility:

- Polymorphism allows the definition of functions that work uniformly over many different types of value
- Higher-order functions make it possible to capture common patterns of computation and/or custom control structures

Type Inference:

- There is an algorithm that can be used to determine if a term/program is well-typed
- Any well-typed expression has a most general (<u>principal</u>) type from which all other possible types can be obtained
- Explicit types can be provided as useful documentation, but are (usually) not required

- Ease of Implementation:
 - Type checking algorithm is relatively straightforward to implement
 - Polymorphic functions are relatively easy to implement

Time to look at some details ...

Type Inference and Polymorphism

Type Inference

- How do you figure out the type of an expression?
- Known functions and constants have known types:

```
    True, False :: Bool
    not :: Bool -> Bool
    (&&) :: Bool -> Bool
```

- Applications are type checked using the rule:
 - If T and S are types,
 - e₁ is an expression of type T -> S,
 - \bullet e₂ is an expression of type T,
 - Then $e_1 e_2$ is an expression of type S

- What about function definitions or lambda expressions?
- Example: What is the type of the following function? subst x y z = x z (y z)
- And how would we expect GHC to figure it out?
- Inspiration: In math, we use variables as placeholders for unknown values ...
 - Example: 6x + 8y = 48

Typing subst

subst x y z = x z (y z)

- In the same way, we can use <u>type variables</u> as placeholders for unknown types ...
- To start, pick three "fresh" type variables to represent the type of values in the three parameters
 - x :: a
 - y :: b
 - Z :: C
- If there is any relationship between a, b, and c, we'll discover that as we proceed.

subst x y z = x z (y z)

Consider the expression X Z (y Z):

- Because y is applied to z, we can infer that b must be a function type $b = c \rightarrow d$ for some type d
- Similarly, x is applied to z, so: $a = c \rightarrow e$ for some type e
- Finally, (x z) is applied to (y z), so:

e = d -> f for some type f

Thus x z (y z) :: f where:

- x :: a, y :: b, z :: c
- a = c -> e
- b = c -> d
- e = d -> f

■ Z :: C

subst x y z = x z (y z)

- ◆ If we can show e :: t when we assume that x :: s, then the function \x -> e has type s -> t
- For our example:
 - Assuming x :: c -> d -> f, y :: c -> d, and z :: c ...
 - ... we have shown that x z (y z) :: f

Hence:

```
(\x y z -> x z (y z))
:: (c -> d -> f) -> (c -> d) -> c -> f
Or, equivalently:
subst :: (c -> d -> f) -> (c -> d) -> c -> f
```

Generalization

- We made all this progress without assuming anything about types c, d, and f
- So, if we picked any types X, Y, and Z, then subst could also be used as a value of type

$$(X -> Y -> Z) -> (X -> Y) -> X -> Z$$

In fact, for all choices of a, b, and c, we could use subst as a value of type

$$(a -> b -> c) -> (a -> b) -> a -> c$$

We've just made the argument that:

subst ::
$$\forall a. \ \forall b. \ \forall c.$$
 (a -> b -> c) -> (a -> b) -> a -> c 13

Type Variables

- A <u>type variable</u> begins with a lower case letter and represents an arbitrary type
- A type expression that doesn't include variables is sometimes called a monotype
- A type expression that includes type variables is sometimes called a <u>type scheme</u> because it represents a family of types
- E.g., (a -> a) represents a set of types that includes (Int->Int), (Bool->Bool), ([Int]->[Int]) and ((Int -> Bool) -> (Int -> Bool)) ... but not Int -> Bool

Quantifier Notation

- ♦ We sometimes write type schemes using "forall" quantifiers: ∀a. a -> a
 - We can write this in actual code as forall a . a -> a if we use the ScopedTypedVariables extension in GHC
- This emphasizes the fact that this type works "for all" choices of the type a.
- ◆ It is possible to use multiple quantifiers:
 ∀a. ∀b. a -> b -> a
- ◆ If e :: ∀a. T(a), then we can <u>instantiate</u> the quantified variable a with any other type t, and use e as a value of type T(t)

Examples

- ◆ Example: we can instantiate id :: ∀a. a -> a to obtain:
 - id:: Bool -> Bool
 - id :: Char -> Char
 - id :: (a,b) -> (a,b)
 - ...
- Example: we can instantiate

```
subst :: ∀a. ∀b. ∀c. (a -> b -> c) -> (a -> b) -> a -> c to obtain:
```

- subst (&&) not True :: Bool
- subst (+) (2*) 3 :: Int
- subst (:) (\x -> [x,x]) id :: ?
- subst map (\f -> f . f) True :: ?

Typing Function Application

$$\frac{f :: A -> B \qquad x :: A}{f x :: B}$$

Typing Lambda Expressions

Assuming
$$x :: A e :: B$$

(\x -> e) :: A -> B

Typing Function Application

$$\frac{f :: A -> B \qquad x :: A}{f x :: B}$$

Typing Lambda Expressions

Assuming
$$x :: A e :: B$$

(\x -> e) :: A -> B

Typing Function Application Modus Ponens

$$\frac{f :: A \rightarrow B \qquad \times :: A}{f \times :: B}$$

Typing Lambda Expressions Deduction Theorem

Assuming
$$x :: A = :: B$$

 $(\x -> e) :: A -> B$

Hypothetical Syllogism:

```
if A -> B and B -> C, then A -> C
```

Proof: Let g :: A -> B and f :: B -> C

Assume x :: A

Apply g: g x :: B

Apply f: f(g x) :: C

Discharge assumption: $\xspace \xspace \xspac$

Composition \f g x -> f (g x)
::
$$(B -> C) -> (A -> B) -> (A -> C)$$

Type Annotations

Haskell allows us to add type signatures to function definitions

```
id :: a \rightarrow a
id x = x
```

- ◆ Type variables on the right of a :: are assumed to be implicitly bound by a ∀
- Haskell also allows type annotations on expressions:

```
(\x -> x) :: a -> a
```

And on variables bound in patterns

```
(\x::Int) -> x+1) :: Int -> Int
```

but only if ScopedTypedVariables extension is enabled

It's ok to declare any type that is an instance of the principal type:

```
id :: a -> a
id :: b -> b
id :: (a,b) -> (a,b)
id :: Int -> Int
id :: (Int, [b->Int]) -> (Int, [b -> Int])
id :: (a -> a) -> (a -> a)
```

Uses of the function will be restricted to the declared type.

It is an error to declare a type that is not an instance of the principal type:

```
id :: Int -> Bool
id :: Bool -> [Bool]
id :: a -> b
```

- None of these types will be accepted
- None of these types is consistent with the behavior of the id function

- It is often useful to write types in code as a form of documentation
- But the types can be inferred automatically if they are omitted
- The Haskell typechecker will always choose the most general type possible

Type Errors

Type errors occur when the constraints that we obtain cannot be solved:

- if True then False else 'a'
 - Bool does not match Char
- ♦ \x -> x x
 - "Occurs check: cannot construct the infinite type: a ~
 a -> b"
 - if x :: a, then a = a -> b, for some b
 - Hence a = (a -> b) -> b = ((a -> b) -> b) -> b = (((a -> b) -> b) -> b) -> b

"Let Polymorphism"

- Haskell will infer polymorphic types for functions defined at the top-level
- and also in local definitions (i.e., in a let or where clause)
- Example: What is the type of this function?
 f x y = let mi z = z in (mi x, mi y)

"Lambda-bound Variables"

- A limitation of the Haskell type system:
 - Polymorphic values cannot be passed as function arguments
- Example:
 - (id 'a', id True) :: (Char, Bool)
 - But \id -> (id 'a', id True) is not well-typed

Subtleties (1)

Consider the following definition:

- What is the type of f?
- What is the type of g?

Subtleties (2)

Suppose that we define:

```
box :: a -> [a]
box x = [x]
```

- What is the type of:
 box (box True)?
- What is the type of:
 (\b -> b (bTrue)) box?

Subtleties (3)

Haskell will not accept the following function definition:

```
f xs = null xs || f [xs]
```

But it will accept the definition if we add a type signature:

```
f :: [a] -> Bool
```

- What's going on here?
- ("polymorphic recursion"!)

Pathologies

Consider the following example:

```
h = f4 id
where
  pair x y f = f x y
  f1 y = pair y y
  f2 y = f1 (f1 y)
  f3 y = f2 (f2 y)
  f4 y = f3 (f3 y)
```

- What is the type of h?
- What happens if we extend the pattern to f5?

Summary

- The Haskell/Hindley-Milner type system hits a sweet spot providing safety, flexibility, type inference and ease of implementation
- Every well-typed term has a most general type that can be inferred automatically
- There are some subtleties and pathological bad behavior ... but, overall:
 - The type system works well in practice
 - It is fairly intuitive and flexible
 - It is hard to live without when you go back to C/Java/C#/ PHP/...