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Haskell’s Type System 
  Haskell’s type system is based on seminal 
work by (among others): 
!  Haskell Curry and Robert Feys (1958) 
!  Roger Hindley (1969) 
!  Robin Milner (1978) 
!  Luis Damas (1985) 
!  Philip Wadler and Stephen Blott (1989) 
!  … 
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Types in Haskell 

 Type Safety: 
!  If an expression E has type T, then 

evaluating E will produce a value of type T 

!  “Well-typed programs do not go 
wrong”  (Robin Milner) 

!  No need to check types of values at run-
time (a performance benefit) 
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… continued 

 Flexibility: 
!  Polymorphism allows the definition of 

functions that work uniformly over many 
different types of value 

!  Higher-order functions make it possible to 
capture common patterns of computation 
and/or custom control structures 
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… continued 

 Type Inference: 
!  There is an algorithm that can be used to 

determine if a term/program is well-typed 

!  Any well-typed expression has a most 
general (principal) type from which all 
other possible types can be obtained 

!  Explicit types can be provided as useful 
documentation, but are (usually) not 
required 
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… continued 

 Ease of Implementation: 
!  Type checking algorithm is relatively 

straightforward to implement 

!  Polymorphic functions are relatively easy 
to implement 

  Time to look at some details … 



Type Inference and 
Polymorphism 
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Type Inference 
  How do you figure out the type of an expression? 

  Known functions and constants have known 
types: 
!  True, False  :: Bool 
!  not  :: Bool -> Bool 
!  (&&)  :: Bool -> Bool -> Bool 
!  … 

  Applications are type checked using the rule: 
!  If T and S are types, 
!  e1 is an expression of type T -> S, 
!  e2 is an expression of type T, 
!  Then e1 e2 is an expression of type S 
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… continued 
  What about function definitions or lambda 
expressions? 

  Example: What is the type of the following 
function?  subst x y z = x z (y z) 

  And how would we expect GHC to figure it out? 

  Inspiration: In math, we use variables as 
placeholders for unknown values … 
!  Example: 6x + 8y = 48 
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Typing subst 
  In the same way, we can use type variables as 
placeholders for unknown types … 

  To start, pick three “fresh” type variables to 
represent the type of values in the three 
parameters 
!  x :: a 
!  y :: b 
!  z :: c 

  If there is any relationship between a, b, and c, 
we’ll discover that as we proceed. 

subst x y z = x z (y z) 
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… continued 
Consider the expression x z (y z): 

  Because y is applied to z, we can infer that b must be a 
function type b = c -> d for some type d 

  Similarly, x is applied to z, so: 
 a = c -> e for some type e 

  Finally, (x z) is applied to (y z), so: 
 e = d -> f for some type f 

subst x y z = x z (y z) 

Thus x z (y z) :: f 
where: 

!  x :: a, y :: b, z :: c 
!  a = c -> e 
!  b = c -> d  
!  e = d -> f 

!  x :: c -> d -> f 
!  y :: c -> d 
!  z :: c 
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  If we can show e :: t when we assume that x :: s, 
then the function \x -> e has type s -> t 

  For our example: 
!  Assuming x :: c -> d -> f,  y :: c -> d, and z :: c … 
!  … we have shown that  x z (y z) :: f 

  Hence: 
    (\x y z -> x z (y z)) 
               :: (c -> d -> f) -> (c -> d) -> c -> f 
 Or, equivalently: 
    subst  :: (c -> d -> f) -> (c -> d) -> c -> f 

subst x y z = x z (y z) … continued 
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Generalization 
  We made all this progress without assuming 
anything about types c, d, and f 

  So, if we picked any types X, Y, and Z, then subst 
could also be used as a value of type 
  (X -> Y -> Z) -> (X -> Y) -> X -> Z 

  In fact, for all choices of a, b, and c, we could 
use subst as a value of type 
  (a -> b -> c) -> (a -> b) -> a -> c 

  We’ve just made the argument that: 
 subst :: ∀a. ∀b. ∀c. 

         (a -> b -> c) -> (a -> b) -> a -> c 
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Type Variables 
  A type variable begins with a lower case letter 
and represents an arbitrary type 

  A type expression that doesn’t include variables is 
sometimes called a monotype 

  A type expression that includes type variables is 
sometimes called a type scheme because it 
represents a family of types 

  E.g., (a -> a) represents a set of types that 
includes (Int->Int), (Bool->Bool), ([Int]->[Int]) 
and ((Int -> Bool) -> (Int -> Bool)) … 
but not Int -> Bool 
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Quantifier Notation 
  We sometimes write type schemes using “forall” 
quantifiers:  ∀a. a -> a 
!  We can write this in actual code as forall a . a –> a if we 

use the ScopedTypedVariables extension in GHC 
  This emphasizes the fact that this type works “for 
all” choices of the type a. 

  It is possible to use multiple quantifiers: 
       ∀a. ∀b. a -> b -> a 

  If e :: ∀a. T(a), then we can instantiate the 
quantified variable a with any other type t, and 
use e as a value of type T(t) 
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Examples 
  Example: we can instantiate id :: ∀a. a -> a to obtain: 

!  id :: Bool -> Bool 
!  id :: Char -> Char 
!  id :: (a,b) -> (a,b) 
!  … 

  Example: we can instantiate 
subst :: ∀a. ∀b. ∀c. (a -> b -> c) -> (a -> b) -> a -> c 
to obtain: 
!  subst (&&) not True :: Bool 
!  subst (+) (2*) 3 :: Int 
!  subst (:) (\x -> [x,x]) id :: ? 
!  subst map (\f -> f . f) True :: ? 
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Aside: Types are Logical 
  Typing Function Application 

  Typing Lambda Expressions 

f :: A -> B x :: A 
f x :: B 

Assuming x :: A e :: B 
(\x -> e) :: A -> B 
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Aside: Types are Logical 
  Typing Function Application 

  Typing Lambda Expressions 

f :: A -> B x :: A 
f x :: B 

Assuming x :: A e :: B 
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Aside: Types are Logical 
  Typing Function Application Modus Ponens 

  Typing Lambda Expressions Deduction Theorem 

f :: A -> B x :: A 
f x :: B 

Assuming x :: A e :: B 
(\x -> e) :: A -> B 
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Aside: Types are Logical 
Hypothetical Syllogism: 

if A -> B and B -> C, then A -> C 

Proof: Let g :: A -> B and f :: B -> C 
  Assume    x :: A 
  Apply g:    g x :: B 
  Apply f:    f (g x) :: C 
  Discharge assumption:  \x -> f (g x) :: A -> C 

Composition   \f g x -> f (g x) 
                     :: (B -> C) -> (A -> B) -> (A -> C) 
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Type Annotations 
  Haskell allows us to add type signatures to 
function definitions 

 id  :: a -> a 
 id x  = x 

  Type variables on the right of a :: are assumed 
to be implicitly bound by a ∀

  Haskell also allows type annotations on 
expressions: 

 (\x -> x) :: a -> a 

  And on variables bound in patterns 
       (\(x::Int) -> x+1) :: Int -> Int 

        but only if ScopedTypedVariables extension is enabled 
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… continued 
  It’s ok to declare any type that is an instance of 
the principal type: 

 id :: a -> a 
 id :: b -> b 
 id :: (a,b) -> (a,b) 
 id :: Int -> Int 
 id :: (Int, [b->Int]) -> (Int, [b -> Int]) 
 id :: (a -> a) -> (a -> a) 

  Uses of the function will be restricted to the 
declared type. 
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… continued 
  It is an error to declare a type that is not an 
instance of the principal type: 

 id   :: Int -> Bool 
 id   :: Bool -> [Bool] 
 id   :: a -> b 

  None of these types will be accepted 

  None of these types is consistent with the 
behavior of the id function 
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… continued 
  It is often useful to write types in code as a form 
of documentation 

  But the types can be inferred automatically if they 
are omitted 

  The Haskell typechecker will always choose the 
most general type possible 
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Type Errors 
Type errors occur when the constraints that we 
obtain cannot be solved: 

  if True then False else 'a' 
!  Bool does not match Char 

  \x -> x x 
!  “Occurs check: cannot construct the infinite type: a ~ 

a -> b” 
!  if x :: a, then a = a -> b, for some b 
!  Hence a = (a -> b) -> b = ((a -> b) -> b) -> b = (((a 

-> b) -> b) -> b) -> b = … 
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“Let Polymorphism” 
  Haskell will infer polymorphic types for functions 
defined at the top-level 

  and also in local definitions (i.e., in a let or 
where clause) 

  Example: What is the type of this function? 
 f x y = let mi z = z  in (mi x, mi y) 
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“Lambda-bound Variables” 

  A limitation of the Haskell type system: 
!  Polymorphic values cannot be passed as function 

arguments 

  Example: 
!  (id 'a', id True) :: (Char, Bool) 
!  But \id -> (id 'a', id True) is not well-typed 
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Subtleties (1) 

  Consider the following definition: 

 f x = let g y = [x, y] 
     in  g x 

 What is the type of f? 

 What is the type of g? 
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Subtleties (2) 

  Suppose that we define: 
 box  :: a -> [a] 
 box x  = [x] 

 What is the type of: 
         box (box True)? 

 What is the type of: 
  (\b -> b (bTrue)) box? 
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Subtleties (3) 

  Haskell will not accept the following 
function definition: 
  f xs  =  null xs  ||  f [xs] 

  But it will accept the definition if we add a 
type signature: 
  f :: [a] -> Bool 

 What’s going on here? 
  (“polymorphic recursion”!) 
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Pathologies  
  Consider the following example: 

h = f4 id 
  where 
    pair x y f = f x y 
    f1 y = pair y y 
    f2 y = f1 (f1 y) 
    f3 y = f2 (f2 y) 
    f4 y = f3 (f3 y) 
 What is the type of h? 
 What happens if we extend the pattern to 
f5? 
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Summary 
  The Haskell/Hindley-Milner type system hits a 
sweet spot providing safety, flexibility, type 
inference and ease of implementation 

  Every well-typed term has a most general type 
that can be inferred automatically 

  There are some subtleties and pathological bad 
behavior … but, overall: 
!  The type system works well in practice 
!  It is fairly intuitive and flexible 
!  It is hard to live without when you go back to C/Java/C#/

PHP/… 


