
1

CS 457/557: Functional
Languages

Lecture 5: Algebraic Datatypes

Mark P Jones and Andrew Tolmach

Portland State University

2

Algebraic Datatypes
  Booleans and Lists are both examples of
“algebraic datatypes”

  Any value of an algebraic datatype can be built
using just the declared set of constructors.
!  Every Boolean value can be constructed using either

False or True
!  Every list can be described using (a combination of) []

and (:)

  Every value of an algebraic type can be matched
by some combination of constructors

3

In Haskell Notation
data Bool = False | True
introduces:

!  A type, Bool
!  A constructor function, False :: Bool
!  A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces

!  A type, List t, for each type t
!  A constructor function, Nil :: List a
!  A constructor function, Cons :: a -> List a -> List a

Prelude
definition uses
[] and (:)

Built-in special syntax […]

4

More Enumerations
data Rainbow = Red | Orange | Yellow

 | Green | Blue | Indigo | Violet
introduces:

!  A type, Rainbow
!  A constructor function, Red :: Rainbow
!  …
!  A constructor function, Violet :: Rainbow

Every value of type Rainbow is one of the above
seven colors

5

More Recursive Types
data Shape = Circle Radius

 | Polygon [Point]
 | Transform Transform Shape

data Transform
 = Translate Point
 | Rotate Angle
 | Compose Transform Transform

introduces:
!  Two types, Shape and Transform
!  Circle :: Radius -> Shape
!  Polygon :: [Point] -> Shape
!  Transform :: Transform -> Shape -> Shape
!  …

6

More Parameterized Types
data Maybe a = Nothing | Just a
introduces:

!  A type, Maybe t, for each type t
!  A constructor function, Nothing :: Maybe a
!  A constructor function, Just :: a -> Maybe a

data Pair a b = Pair a b
introduces

!  A type, Pair t s, for any types t and s
!  A constructor function Pair :: a -> b -> Pair a b

Built-in special
syntax (,)

7

General Form
Algebraic datatypes are introduced by top-level definitions of
the form:

 data T a1 … an = c1 | … | cm
where:

!  T is the type name (must start with a capital letter)
!  a1, …, an are (distinct) (type) arguments/parameters/

variables (must start with lower case letter) (n≥0)
!  Each of the ci is an expression Fi t1 … tk where:

"  t1, …, t
k
 are type expressions that (optionally) mention the

arguments a1, …, an
"  Fi is a new constructor function Fi :: t1 -> … -> tp -> T a1 … an

"  The arity of Fi, k≥0

Quite a lot for a single definition!

8

Pattern Matching
  In addition to introducing a new type and a
collection of constructor functions, each data
definition also adds the ability to pattern match
over values of the new type

  For example, given
 data Maybe a = Nothing | Just a

 then we can define functions like the following:

 orElse :: Maybe a -> a -> a
 Just x `orElse` y = x
 Nothing `orElse` y = y

9

Pattern Matching & Substitution
  The result of a pattern match is either:

!  A failure
!  A success, accompanied by a substitution that

provides a value for each of the values in the
pattern

  Examples:
!  [] does not match the pattern (x:xs)
!  [1,2,3] matches the pattern (x:xs) with x=1

and xs=[2,3]

10

Patterns
More formally, a pattern is either:
  An identifier

!  Matches any value, binds result to the identifier

  An underscore (a “wildcard”)
!  Matches any value, discards the result

  A constructed pattern of the form C p1 … pn,
where C is a constructor of arity n and p1, … ,pn
are patterns of the appropriate type
!  Matches any value of the form C e1 … en, provided that

each of the ei values matches the corresponding pi
pattern.

11

Other Pattern Forms
For completeness:
  “Sugared” constructor patterns:

!  Tuple patterns (p1,p2)
!  List patterns [p1, p2, p3]
!  Strings, for example: "hi" = (‘h’ : ‘i’ : [])

  Numeric Literals:
!  Can be considered as constructor patterns, but

the implementation uses equality (==) to test
for matches

  “as” patterns, id@pat; lazy patterns, ~pat; and
labeled patterns, C{l=x}

12

Function Definitions
  In general, a function definition is written as a list
of adjacent equations of the form:

 f p1 … pn = rhs
 where:

!  f is the name of the function that is being
defined

!  p1, …, pn are patterns, and rhs is an expression

  All equations in the definition of f must have the
same number of arguments (the “arity” of f)

13

… continued
  Given a function definition with m equations:

f p1,1 … pn,1 = rhs1
f p1,2 … pn,2 = rhs2
…
f p1,m … pn,m = rhsm

  The value of f e1 … en is S rhsi, where i is the
smallest integer such that the expressions ej
match the patterns pj,i and S is the corresponding
substitution.

14

Guards, Guards!
  A function definition may also include guards
(Boolean expressions):

 f p1 … pn | g1 = rhs1
 | g2 = rhs2
 | g3 = rhs3

  An expression f e1 … en will only match an
equation like this if all of the ei match the
corresponding pi and, in addition, at least one of
the guards gj is True
  In that case, the value is S rhsj, where j is the
smallest index such that gj is True
  (The prelude defines otherwise = True :: Bool for
use in guards.)

15

Where Clauses
  A function definition may also have a where clause:

 f p1 … pn = rhs
 where decls

  This behaves like a let expression:
 f p1 … pn = let decls in rhs

  Except that where clauses can scope across
guards:

 f p1 … pn | g1 = rhs1
 | g2 = rhs2
 | g3 = rhs3
 where decls

  Variables bound here in decls can be used in any of
the gi or rhsi

16

Example: filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

 | p x = x : rest
 | otherwise = rest
 where rest = filter p xs

17

Example: Binary Search Trees
data Tree = Leaf | Fork Tree Int Tree

insert :: Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork l m r)

 | n <= m = Fork (insert n l) m r
 | otherwise = Fork l m (insert n r)

lookup :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork l m r)

 | n < m = lookup n l
 | n > m = lookup n r
 | otherwise = True

18

Example: Folds on Trees
foldTree :: t -> (t -> Int -> t -> t) -> Tree -> t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork l n r)

 = fork (foldTree leaf fork l) n (foldTree leaf fork r)

sumTree :: Tree -> Int
sumTree = foldTree 0 (\l n r-> l + n + r)

heightTree :: Tree -> Int
heightTree = foldTree 0 (\l _ r -> max l r + 1)

19

Case Expressions
  Case expressions can be used for pattern
matching:

 case e of
 p1 -> e1
 p2 -> e2
 …
 pn -> en

  Equivalent to:
 let f p1 = e1
 f p2 = e2
 …
 f pn = en
in f e

20

… continued

  Guards and where clauses can also be used
in case expressions:

filter p xs = case xs of
 [] -> []
 (x:xs) | p x -> x:ys
 | otherwise -> ys
 where ys = filter p xs

21

If Expressions
  If expressions can be used to test Boolean
values:

 if e then e1 else e2

  Equivalent to:
 case e of
 True -> e1
 False -> e2

22

Summary
  Algebraic datatypes can support:

!  Enumeration types
!  Parameterized types
!  Recursive types
!  Products (composite/aggregate values); and
!  Sums (alternatives)

  Type constructors, Constructor functions, Pattern
matching

  Why “algebraic”? More to come…

