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Algebraic Datatypes 
  Booleans and Lists are both examples of 
“algebraic datatypes” 

  Any value of an algebraic datatype can be built 
using just the declared set of constructors. 
!  Every Boolean value can be constructed using either 

False or True 
!  Every list can be described using (a combination of) [] 

and (:) 

  Every value of an algebraic type can be matched 
by some combination of constructors 
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In Haskell Notation 
data Bool = False | True 
introduces: 

!  A type, Bool 
!  A constructor function, False :: Bool 
!  A constructor function, True :: Bool 

data List a = Nil | Cons a (List a) 
introduces 

!  A type, List t, for each type t 
!  A constructor function, Nil :: List a 
!  A constructor function, Cons :: a -> List a -> List a 

Prelude 
definition uses 
[] and (:) 

Built-in special syntax […] 
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More Enumerations 
data Rainbow = Red | Orange | Yellow  

  | Green | Blue  | Indigo | Violet 
introduces: 

!  A type, Rainbow 
!  A constructor function, Red :: Rainbow 
!  … 
!  A constructor function, Violet :: Rainbow 

Every value of type Rainbow is one of the above 
seven colors 
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More Recursive Types 
data Shape = Circle Radius 

      | Polygon [Point] 
      | Transform Transform Shape 

data Transform 
     = Translate Point 
      | Rotate Angle 
      | Compose Transform Transform 

introduces: 
!  Two types, Shape and Transform 
!  Circle :: Radius -> Shape 
!  Polygon :: [Point] -> Shape 
!  Transform :: Transform -> Shape -> Shape 
!  … 
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More Parameterized Types 
data Maybe a = Nothing | Just a 
introduces: 

!  A type, Maybe t, for each type t 
!  A constructor function, Nothing :: Maybe a 
!  A constructor function, Just :: a -> Maybe a 

data Pair a b = Pair a b 
introduces 

!  A type, Pair t s, for any types t and s 
!  A constructor function Pair :: a -> b -> Pair a b 

Built-in special 
syntax (,) 
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General Form 
Algebraic datatypes are introduced by top-level definitions of 
the form: 

  data T a1 … an = c1 | … | cm 
where: 

!  T is the type name (must start with a capital letter) 
!  a1, …, an are (distinct) (type) arguments/parameters/ 

variables (must start with lower case letter) (n≥0) 
!  Each of the ci is an expression Fi t1 … tk where: 

"  t1, …, t
k
 are type expressions that (optionally) mention the 

arguments a1, …, an 
"  Fi is a new constructor function Fi :: t1 -> … -> tp -> T a1 … an 

"  The arity of Fi, k≥0 

Quite a lot for a single definition! 
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Pattern Matching 
  In addition to introducing a new type and a 
collection of constructor functions, each data 
definition also adds the ability to pattern match 
over values of the new type 

  For example, given 
 data Maybe a = Nothing | Just a 

 then we can define functions like the following: 

 orElse    :: Maybe a -> a -> a 
 Just x    `orElse` y  = x 
 Nothing `orElse` y  = y 
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Pattern Matching & Substitution 
  The result of a pattern match is either: 

!  A failure 
!  A success, accompanied by a substitution that 

provides a value for each of the values in the 
pattern 

  Examples: 
!  [] does not match the pattern (x:xs) 
!  [1,2,3] matches the pattern (x:xs) with x=1 

and xs=[2,3] 
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Patterns 
More formally, a pattern is either: 
  An identifier 

!  Matches any value, binds result to the identifier 

  An underscore (a “wildcard”) 
!  Matches any value, discards the result 

  A constructed pattern of the form C p1 … pn, 
where C is a constructor of arity n and p1, … ,pn 
are patterns of the appropriate type 
!  Matches any value of the form C e1 … en, provided that 

each of the ei values matches the corresponding pi 
pattern. 
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Other Pattern Forms 
For completeness: 
  “Sugared” constructor patterns:  

!  Tuple patterns (p1,p2) 
!  List patterns [p1, p2, p3] 
!  Strings, for example: "hi" = (‘h’ : ‘i’ : []) 

  Numeric Literals: 
!  Can be considered as constructor patterns, but 

the implementation uses equality (==) to test 
for matches 

  “as” patterns, id@pat; lazy patterns, ~pat; and 
labeled patterns, C{l=x} 
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Function Definitions 
  In general, a function definition is written as a list 
of adjacent equations of the form: 

 f p1 … pn = rhs 
 where: 

!  f is the name of the function that is being 
defined 

!  p1, …, pn are patterns, and rhs is an expression 

  All equations in the definition of f must have the 
same number of arguments (the “arity” of f) 
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… continued 
  Given a function definition with m equations: 

f p1,1 … pn,1 = rhs1 
f p1,2 … pn,2 = rhs2 
… 
f p1,m … pn,m = rhsm 

  The value of f e1 … en is S rhsi, where i is the 
smallest integer such that the expressions ej 
match the patterns pj,i and S is the corresponding 
substitution. 



14 

Guards, Guards! 
  A function definition may also include guards 
(Boolean expressions): 

 f p1 … pn  | g1 = rhs1 
  | g2 = rhs2 
  | g3 = rhs3 

  An expression f e1 … en will only match an 
equation like this if all of the ei match the 
corresponding pi and, in addition, at least one of 
the guards gj is True 
  In that case, the value is S rhsj, where j is the 
smallest index such that gj is True 
  (The prelude defines otherwise = True :: Bool for 
use in guards.) 
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Where Clauses 
  A function definition may also have a where clause: 

 f p1 … pn = rhs 
             where decls 

  This behaves like a let expression: 
 f p1 … pn = let decls in rhs   

  Except that where clauses can scope across 
guards: 

 f p1 … pn    | g1 = rhs1 
  | g2 = rhs2 
  | g3 = rhs3 
    where decls 

  Variables bound here in decls can be used in any of 
the gi or rhsi 
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Example: filter 

filter     :: (a -> Bool) -> [a] -> [a] 
filter p []    = [] 
filter p (x:xs) 

  | p x    = x : rest 
  | otherwise  = rest 
    where rest = filter p xs 
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Example: Binary Search Trees 
data Tree    = Leaf | Fork Tree Int Tree 

insert     :: Int -> Tree -> Tree 
insert n Leaf   = Fork Leaf n Leaf 
insert n (Fork l m r) 

 | n <= m    = Fork (insert n l) m r 
 | otherwise   = Fork l m (insert n r) 

lookup     :: Int -> Tree -> Bool 
lookup n Leaf   = False 
lookup n (Fork l m r) 

  | n < m    = lookup n l 
  | n > m    = lookup n r 
  | otherwise   = True 
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Example: Folds on Trees 
foldTree  :: t -> (t -> Int -> t -> t) -> Tree -> t 
foldTree leaf fork Leaf = leaf 
foldTree leaf fork (Fork l n r) 

       = fork (foldTree leaf fork l) n (foldTree leaf fork r) 

sumTree :: Tree -> Int 
sumTree = foldTree 0 (\l n r-> l + n + r) 

heightTree :: Tree -> Int 
heightTree = foldTree 0 (\l _ r -> max l r + 1) 
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Case Expressions 
  Case expressions can be used for pattern 
matching: 

 case e of 
   p1 -> e1 
   p2 -> e2 
   … 
   pn -> en 

  Equivalent to: 
 let f p1 = e1 
     f p2 = e2 
     … 
     f pn = en 
in f e 
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… continued 

  Guards and where clauses can also be used 
in case expressions: 

filter p xs = case xs of 
    []                   -> [] 
    (x:xs) | p x         -> x:ys 
     | otherwise -> ys 
                where ys = filter p xs 
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If Expressions 
  If expressions can be used to test Boolean 
values: 

 if e then e1 else e2 

  Equivalent to: 
 case e of 
   True  -> e1 
   False  -> e2 
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Summary 
  Algebraic datatypes can support: 

!  Enumeration types 
!  Parameterized types 
!  Recursive types 
!  Products (composite/aggregate values); and 
!  Sums (alternatives) 

  Type constructors, Constructor functions, Pattern 
matching 

  Why “algebraic”? More to come… 


