
1

CS 457/557: Functional
Languages

Lecture 4: Laws; Folds

Mark P Jones and Andrew Tolmach

Portland State University

2

Lawful Programming

  Informal description:
 “map applies its first argument to every element in its
second argument …”

  Type signature:
 map :: (a -> b) -> [a] -> [b]

  Laws:
!  Normally in the form of equalities between expressions …

How can we give useful information about a function
without necessarily having to give all the details of
its definition?

3

Algebra of Lists
  (++) is associative with unit []

 xs ++ (ys ++ zs) = (xs ++ ys) ++ zs
 [] ++ xs = xs = xs ++ []

  map preserves identities, distributes over
composition and concatenation:
 map id = id
 map (f . g) = map f . map g
 map f (xs ++ ys) = map f xs ++ map f ys

4

… continued
  filter distributes over concatenation

!  filter p (xs ++ ys) = filter p xs ++ filter p ys

  Filters and maps:
!  filter p . map f = map f . filter (p . f)

  Composing filters:
!  filter p . filter q = filter r

 where r x = q x && p x

5

Aside: Extensionality
  Two functions are equal if they give the same
results on the same arguments

 f = g ⇔ ∀x. f x = g x

  Example: f x = 1 + 2*x and g = (1+).(2*), then:
 g x = ((1+) . (2*)) x

 = (1+) ((2*) x)
 = 1 + 2*x
 = f x

  Hence f = g

6

Laws Describe Interactions
  A lot of laws describe how one operator interacts
with another

  Example: interactions with reverse:
!  reverse . map f = map f . reverse
!  reverse . filter p = filter p . reverse
!  map f . map g = map (f . g)
!  reverse (xs ++ ys) = reverse ys ++ reverse xs
!  reverse . reverse = reverse

  Caution: stating a law doesn’t make it true! (e.g.,
the last two laws for reverse are not true of all
lists…)

7

Uses for Laws
Laws can be used:

  To capture/document deep intuitions about
program behavior

  To support reasoning about program behavior

  To optimize or transform programs (either by
hand, or in a compiler)

  As properties to be tested

  As properties to be proved

8

concat
  concat :: [[a]] -> [a]
  concat [[1,2], [3,4,5], [6]]
= [1,2,3,4,5,6]

  Laws:
!  filter p . concat = concat . map (filter p)
!  map f . concat = concat . map (map f)
!  concat . concat = concat . map concat

9

Folds:

10

Folds!
  A list xs can be built by applying the (:) and []
operators to a sequence of values:
 xs = x1 : x2 : x3 : x4 : … : xk : []

  Suppose that we are able to replace every use of
(:) with a binary operator (⊕), and the final []
with a value n:
 xs = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ … ⊕ xk ⊕ n

  The resulting value is called foldr (⊕) n xs
  Many useful functions on lists can be described in
this way.

11

Graphically

:

:

:

[]

e1

e2

e3

⊕

⊕

⊕

n

e1

e2

e3

f

f = foldr (⊕) n

12

Example: sum

:

:

:

[]

e1

e2

e3

+

+

+

0

e1

e2

e3

sum = foldr (+) 0

13

Example: product

:

:

:

[]

e1

e2

e3

*

*

*

1

e1

e2

e3

product = foldr (*) 1

14

Example: length

:

:

:

[]

e1

e2

e3

cons

cons

cons

0

e1

e2

e3

cons x ys = 1 + ys

length = foldr (\x ys -> 1 + ys) 0

15

Example: map

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys = f x:ys

map f = foldr (\x ys -> f x : ys) []

16

Example: filter

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys
 = if p x
 then x:ys
 else ys

filter p = foldr (\x ys -> if p x then x:ys else ys) []

17

Formal Definition
foldr :: (a->b->b) -> b -> [a] -> b
foldr cons nil [] = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)

18

Applications
sum = foldr (+) 0
product = foldr (*) 1
length = foldr (\x ys -> 1 + ys) 0
map f = foldr (\x ys -> f x : ys) []
filter p = foldr c []
 where c x ys = if p x then x:ys else ys
xs ++ ys = foldr (:) ys xs
and = foldr (&&) True
or = foldr (||) False

19

Patterns of Computation
  foldr captures a common pattern of computations
over lists

  As such, it is a very useful function in practice to
include in the Prelude

  Even from a theoretical perspective, it is very
useful because it makes a deep connection
between functions that might otherwise seem
very different …
  From the perspective of lawful programming, one
law about foldr can be used to reason about
many other functions

20

A law about foldr
  If (⊕) is an associative operator with unit n, then

 foldr (⊕) n xs ⊕ foldr (⊕) n ys
 = foldr (⊕) n (xs ++ ys)

  (x1 ⊕ … ⊕ xk ⊕ n) ⊕ (y1 ⊕ … ⊕ yj ⊕ n)
 = (x1 ⊕ … ⊕ xk ⊕ y1 ⊕ … ⊕ yj ⊕ n)

  All of the following laws are special cases:
sum xs + sum ys = sum (xs ++ ys)
product xs * product ys = product (xs ++ ys)
and xs && and ys = and (xs ++ ys)
or xs || or ys = or (xs ++ ys)

21

foldl
  There is a companion function to foldr
called foldl:
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl s n [] = n
foldl s n (x:xs) = foldl s (s n x) xs

  For example:
 foldl s n [e1, e2, e3]

 = s (s (s n e1) e2) e3
 = ((n `s` e1) `s` e2) `s` e3

22

foldr vs foldl

snoc

snoc

snoc

nil

e3

e2

e1

cons

cons

cons

nil

e1

e2

e3

foldr foldl

23

Uses for foldl
  Many of the functions defined using foldr can be
defined using foldl:

 sum = foldl (+) 0
 product = foldl (*) 1

  There are also some functions that are more
easily defined using foldl:

 reverse = foldl (\ys x -> x:ys) []

  When should you use foldr and when should you
use foldl? When should you use explicit recursion
instead? … (to be continued)

24

foldr1 and foldl1
  Variants of foldr and foldl that work on non-
empty lists:

 foldr1 :: (a -> a -> a) -> [a] -> a
 foldr1 f [x] = x
 foldr1 f (x:xs) = f x (foldr1 f xs)

 foldl1 :: (a -> a -> a) -> [a] -> a
 foldl1 f (x:xs) = foldl f x xs

  Notice:
!  No case for empty list
!  No argument to replace empty list
!  Less general type (only one type variable)

25

Uses of foldl1, foldr1

From the prelude:
minimum = foldl1 min
maximum = foldl1 max

Not in the prelude:
commaSep = foldr1 (\s t -> s ++ ", " ++ t)

26

Example: Adding Commas
To make large numbers easier to read, it is common
to insert a comma after every third digit, starting
from the right.

Example: 1234567 -> “1,234,567”

The show function can turn an Integer into a String,
but how do we insert the commas?

27

Example: Adding Commas
commas
 = reverse

 . foldr1 (\s t -> s++","++t)

 . group 3

 . reverse

 . show

"7654321"

["765", "432", "1"]

"765,432,1"

"1,234,567"

1234567

"1234567"

28

Summary
  Folds on lists have many uses

  Folds capture a common pattern of
computation on list values

  In fact, there are similar notions of fold
functions on many other algebraic
datatypes …
!  (Hence the Foldable type class…)

