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Lawful Programming 

  Informal description: 
 “map applies its first argument to every element in its 
second argument …” 

  Type signature: 
 map :: (a -> b) -> [a] -> [b] 

  Laws: 
!  Normally in the form of equalities between expressions … 

How can we give useful information about a function 
without necessarily having to give all the details of 
its definition? 
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Algebra of Lists 
  (++) is associative with unit [] 

 xs ++ (ys ++ zs)  =  (xs ++ ys) ++ zs 
 [] ++ xs   =   xs  =  xs ++ [] 

  map preserves identities, distributes over 
composition and concatenation: 
 map id  = id 
 map (f . g)  = map f . map g 
 map f (xs ++ ys)  = map f xs ++ map f ys 
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… continued 
  filter distributes over concatenation 

!  filter p (xs ++ ys) = filter p xs ++ filter p ys 

  Filters and maps: 
!  filter p . map f = map f . filter (p . f) 

  Composing filters: 
!  filter p . filter q = filter r 

  where r x = q x && p x 
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Aside: Extensionality 
  Two functions are equal if they give the same 
results on the same arguments 

 f = g ⇔ ∀x. f x = g x 

  Example: f x = 1 + 2*x and g = (1+).(2*), then: 
     g x  = ((1+) . (2*)) x 

  = (1+) ((2*) x) 
  = 1 + 2*x 
  = f x 

  Hence f = g 
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Laws Describe Interactions 
  A lot of laws describe how one operator interacts 
with another 

  Example: interactions with reverse: 
!  reverse . map f = map f . reverse 
!  reverse . filter p = filter p . reverse 
!  map f . map g = map (f . g) 
!  reverse (xs ++ ys) = reverse ys ++ reverse xs 
!  reverse . reverse = reverse 

  Caution: stating a law doesn’t make it true! (e.g., 
the last two laws for reverse are not true of all 
lists…) 
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Uses for Laws 
Laws can be used: 

  To capture/document deep intuitions about 
program behavior 

  To support reasoning about program behavior 

  To optimize or transform programs (either by 
hand, or in a compiler) 

  As properties to be tested 

  As properties to be proved 
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concat 
  concat :: [[a]] -> [a] 
  concat [[1,2], [3,4,5], [6]] 
= [1,2,3,4,5,6] 

  Laws: 
!  filter p . concat = concat . map (filter p) 
!  map f . concat = concat . map (map f) 
!  concat . concat = concat . map concat 
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Folds: 
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Folds! 
  A list xs can be built by applying the (:) and [] 
operators to a sequence of values: 
    xs = x1 : x2 : x3 : x4 : … : xk : [] 

  Suppose that we are able to replace every use of 
(:) with a binary operator (⊕), and the final [] 
with a value n: 
    xs = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ … ⊕ xk ⊕ n 

  The resulting value is called  foldr (⊕) n xs 
  Many useful functions on lists can be described in 
this way. 
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Graphically 

: 

: 

: 

[] 

e1 

e2 

e3 

⊕ 

⊕ 

⊕ 

n 

e1 

e2 

e3 

f 

f = foldr (⊕) n 



12 

Example: sum 
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sum = foldr (+) 0 
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Example: product 
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product = foldr (*) 1 
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Example: length 
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cons x ys = 1 + ys 

length = foldr (\x ys -> 1 + ys) 0 
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Example: map 
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cons x ys = f x:ys 

map f = foldr (\x ys -> f x : ys) [] 
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Example: filter 
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cons x ys 
 = if p x 
     then x:ys 
     else ys 

filter p = foldr (\x ys -> if p x then x:ys else ys) [] 
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Formal Definition 
foldr        :: (a->b->b) -> b -> [a] -> b 
foldr cons nil []   = nil 
foldr cons nil (x:xs)  = cons x (foldr cons nil xs) 
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Applications 
sum   = foldr (+) 0 
product  = foldr (*) 1 
length  = foldr (\x ys -> 1 + ys) 0 
map f  = foldr (\x ys -> f x : ys) [] 
filter p  = foldr c [] 
  where c x ys = if p x then x:ys else ys 
xs ++ ys      = foldr (:) ys xs 
and   = foldr (&&) True 
or   = foldr (||)   False 
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Patterns of Computation 
  foldr captures a common pattern of computations 
over lists 

  As such, it is a very useful function in practice to 
include in the Prelude 

  Even from a theoretical perspective, it is very 
useful because it makes a deep connection 
between functions that might otherwise seem 
very different … 
  From the perspective of lawful programming, one 
law about foldr can be used to reason about 
many other functions 
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A law about foldr 
  If (⊕) is an associative operator with unit n, then 

 foldr (⊕) n xs    ⊕    foldr (⊕) n ys 
      = foldr (⊕) n (xs ++ ys) 

  (x1 ⊕ … ⊕ xk ⊕ n) ⊕ (y1 ⊕ … ⊕ yj ⊕ n) 
  = (x1 ⊕ … ⊕ xk ⊕ y1 ⊕ … ⊕ yj ⊕ n) 

  All of the following laws are special cases: 
sum xs  +    sum ys   = sum (xs ++ ys) 
product xs *    product ys = product (xs ++ ys) 
and xs  &&  and ys   = and (xs ++ ys) 
or xs  ||    or   ys   = or (xs ++ ys) 
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foldl 
  There is a companion function to foldr 
called foldl: 
foldl          :: (b -> a -> b) -> b -> [a] -> b 
foldl s n []       = n 
foldl s n (x:xs) = foldl s (s n x) xs 

  For example: 
 foldl s n [e1, e2, e3] 

 = s (s (s n e1) e2) e3 
 = ((n `s` e1) `s` e2) `s` e3 
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foldr vs foldl 
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Uses for foldl 
  Many of the functions defined using foldr can be 
defined using foldl: 

 sum  = foldl (+) 0 
 product  = foldl (*) 1 

  There are also some functions that are more 
easily defined using foldl: 

 reverse  = foldl (\ys x -> x:ys) [] 

  When should you use foldr and when should you 
use foldl?  When should you use explicit recursion 
instead? … (to be continued) 
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foldr1 and foldl1 
  Variants of foldr and foldl that work on non-
empty lists: 

 foldr1   :: (a -> a -> a) -> [a] -> a 
 foldr1 f [x]  = x 
 foldr1 f (x:xs)  = f x (foldr1 f xs) 

 foldl1   :: (a -> a -> a) -> [a] -> a 
 foldl1 f (x:xs)  = foldl f x xs 

  Notice: 
!  No case for empty list 
!  No argument to replace empty list 
!  Less general type (only one type variable) 
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Uses of foldl1, foldr1 

From the prelude: 
minimum   = foldl1 min 
maximum  = foldl1 max 

Not in the prelude: 
commaSep = foldr1 (\s t -> s ++ ", " ++ t) 
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Example: Adding Commas 
To make large numbers easier to read, it is common 
to insert a comma after every third digit, starting 
from the right. 

Example:  1234567 -> “1,234,567” 

The show function can turn an Integer into a String, 
but how do we insert the commas? 
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Example: Adding Commas 
commas 
    =  reverse 

   .  foldr1 (\s t -> s++","++t)  

  .  group 3 

  .  reverse 

  .  show 

"7654321" 

["765", "432", "1"]  

"765,432,1" 

"1,234,567" 

1234567 

"1234567" 
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Summary 
  Folds on lists have many uses 

  Folds capture a common pattern of 
computation on list values 

  In fact, there are similar notions of fold 
functions on many other algebraic 
datatypes … 
!  (Hence the Foldable type class…) 


