
CS457/557
Functional Languages

Spring 2018
Lecture 1: Course Introduction

Andrew Tolmach
Portland State University

(with thanks to Mark P. Jones)

1

Goals of this course
Introduce the beautiful ideas of functional

programming

Explain new strategies for building and verifying
programs

Demonstrate that functional programming has real-
world utility

2

Important Underlying Themes
 Computing by calculating

 Recursive algorithms and types

 Type-driven programming

 Abstraction over values, functions, types

 Programming by composition

 Reasoning about programs

3

Specific Topics (subject to revision)
 Haskell programming language

 Programming with lists

 Programming with algebraic data types

 Polymorphism and type classes

 Higher-order functions

4

More specific topics (subject to revision)

 Functions as data

 Monads

 Laziness

 Parallelism

 Implementation

5

What this course is not
 An advanced course in the details of Haskell (and

its many non-standard extensions)

 A detailed tour of the Haskell library

 A comparative study of functional languages

 A good course to take if you don’t really like
programming much

6

What should you bring?
 Your brain, prepared by these prerequisites

 CS 202,311 are formally required (for 457)

 CS320 is useful, but not essential

 Good background in programming (but not FP)

 Your well-charged laptop!

 This is a hands-on course, and we will be doing lab
work towards the end of each class meeting

7

Administrivia
 Instructor: Andrew Tolmach

 Office hours: Tu 1-2pm or by appointment

 TA: Chris Chak

 Office hours: M 4-5 (tentative)

 Course web page www.cs.pdx.edu/~apt/cs457

 For all homework assignments, lectures notes, etc.

 Course mailing list cs457list@cs.pdx.edu

 For helpful announcements and for you to ask questions

 Course homework submission address cs457acc@pdx.edu

For homework submission only! Don’t get the two mailing lists confused!

8

http://www.cs.pdx.edu/~apt/cs457
mailto:cs457list@cs.pdx.edu
mailto:cs457acc@pdx.edu

Course format
 Meet Mon/Wed 2-3:50pm

 Start each class with lecture

 Finish with problem-solving lab (bring your laptop!)

 Weekly homeworks due Wednesdays

 Essential part of course — 55% of grade

 In-class midterm on May 7 — 20% of grade

 Final programming project due June 6 — 25% of grade

 Can be done individually or in a team of 2

 NO final exam

9

Policies
 By default, late work is not accepted

 Contact us if you feel an extension is justified

 Work individually on the homeworks

 Discussion is good

 But anything you turn should be your own, individual
work

 Don’t cheat!

10

Resources
 Syllabus

 Textbook

 Lecture slides

 Huge amount of on-line
material, starting at
www.haskell.org/documentation

 But beware of unnecessary
complexity!

19

This course is not:
an advanced class in functional programming
n  No previous experience is assumed

a religious sermon
n  I’m not interested in world domination!

a tour of esoteric Haskell features/systems
n  General concepts and principles of functional

programming will be our priority

a tutorial about Haskell libraries
n  There’s just not enough time …

20

Reading Material
Textbook

Notes on Haskell

Slides, etc.

Plenty of additional
reading material is
available online

Beware of unnecessary complexity!

21

The Language Report
The definition of the Haskell 98
standard

Lots of technical details … not a
great read!

Available in hard copy from
Cambridge University Press

Or in pdf/html/etc… from
www.haskell.org/definition

22

Classic Textbooks

Introduction to Functional Programming using Haskell (2nd ed),
Richard Bird
Thinking Functionally with Haskell, Richard Bird
The Haskell School of Expression, Paul Hudak
Haskell: The Craft of Functional Programming (2nd ed), Simon
Thompson
Programming in Haskell (1st ed), Graham Hutton

23

Popular (Online) Texts

Real World Haskell, Bryan O�Sullivan, John Goerzen, Don
Stewart

Learn You a Haskell for Great Good, Miran Lipovaca

The Haskell School of Music, Paul Hudak

Google the titles to find online versions
All three also (or will soon be) available as regular books

The Haskell School of Music

— From Signals to Symphonies —

Paul Hudak

Yale University
Department of Computer Science

Version 2.6 (January 2014)

24

Why read a book?
To get a different perspective

To support different learning styles

To answer specific questions

Of course, there is a wealth of information
on the web

But don’t forget that you can also talk to us
for help and guidance! Remember we can:
n  Understand your background
n  Focus on specific questions
n  Help you to avoid unnecessary complexity

11

http://www.haskell.org/documentation

What is Functional Programming?
 A style of programming that emphasizes evaluation of

expressions, rather than execution of commands

 Expressions are formed by using functions to combine
basic values

 Functions are first-class values

 They can be stored in data structures

They can be passed as arguments or returned as results of
other functions

 A functional language is one that supports and
encourages programming in a functional style

12

Pure Functional Programming
 No mutation! Everything (variables, data

structures, …) is immutable

 Expressions have no side-effects, like updates to
global variables or output to the screen

 Function results depend only on input values

 Deterministic, like functions in mathematics

 Makes programs much more compositional

Refactoring and parallelizing are much easier

13

The functional language landscape
 Impure, strict evaluation, dynamic typing:

 Lisp, Scheme, Racket, Erlang, Clojure, …

Impure, strict evaluation, static typing:

 Standard ML (SML), OCaml, F#, Scala, …

 Pure, lazy evaluation, static typing:

 Haskell, Miranda, Orwell, …

 Other combinations relatively unexplored…

14

Haskell
 By far the most important pure, lazy FL

 Developed by committee of academics in late 80’s

 Combined and standardized several earlier languages

 Current stable version is “Haskell 2010”

 Dominant implementation is “Glasgow Haskell” (ghc)

Includes many experimental extensions (which we will
mostly avoid)

15

Write a program to add up the
numbers from 1 to 10.

16

In C, C++, Java, C#, …

int tot = 0;
for (int i=1; i<11; i++)
 tot = tot + i;

initialization

initialization iteration

update
update

implicit result returns in the variable tot

17

In OCaml

let rec sum i tot =
 if i > 10
 then tot
 else sum (i+1) (tot+i)
in sum 1 0

accumulating
parameter

(tail) recursion
initialization

result is the value of the expression
18

In Haskell

sum [1..10]

the list of
numbers to add

combining
function

result is the value of the expression

19

Was that too simple?
 Tried to give “idiomatic” solutions in each language

 This example makes Haskell look good, partly
because sum function is already in standard library

 An objective comparison between languages should
account for library code as well as main program

 Here’s an alternative solution using somewhat less
specialized library functions

foldr (+) 0 [1..10]

20

We can write OCaml in Haskell

let sum i tot | i > 10 = tot
 | otherwise =
 sum (i+1) (tot+1)
in sum 1 0

and sometimes we will need to write explicit
 recursions like this

but we will try to avoid them when we can

21

We can write C in Haskell!
import Data.IORef
main =
 do tot <- newIORef 0
 i <- newIORef 1
 let loop =
 do ival <- readIORef i
 if ival < 11 then
 do modifyIORef tot (+ival)
 modifyIORef i (+1)
 loop
 else
 return ()
 loop
 totval <- readIORef tot
 print totval

result is printed by main program

Xwe almost
never need
to do this!

22

What makes a good program?
 Correctness

 Maintainability (Clarity, Conciseness, Modularity, …)

 Performance

23

Raising the level of abstraction
 “If you want to reduce [design time], you have to

stop thinking about something you used to have to
think about”
(Joe Stoy, quoted on the Haskell mailing list)

 Example: memory allocation and deallocation

 Example: data representation

 Example: order of evaluation

 Example: (restrictive) type specifications

24

Computing by Calculating
 In high school algebra, we learn to rearrange and

simplify numeric expressions to obtain answers

 Pocket calculators automate details of calculation

 In pure functional programming, we can work with
program expressions in much the same way

 With multiple primitive data types, lists, functions, user-
defined types

 Ability to name (abstract over) values and operations

 Functional language evaluators automate calculation

25

Example calculation
 In pure functional language, we can perform

computations by replacing defined symbols with their
definitions

Given a = 10
b = 7
diff x y = if x <= y then y-x else x-y

Can calculate

diff a b ⟹

if a <= b then b-a else a-b ⟹

if 10 <= 7 then 7-10 else 10-7 ⟹

if False then 7-10 else 10-7 ⟹ 10-7 ⟹ 3
26

Haskell Pragmatics
 Glasgow Haskell ecosystem

 ghc — native code compiler

 ghci — interpreter

 hackage — package database

 cabal, stack — package managers

 Haskell Platform — convenient single download

 Other implementations exists (Hugs, …)

27

Starting ghci

The most important commands:
 :q quit
 :l file load file
 :e file edit file
 expr evaluate expression

user$ ghci
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Prelude>

The REPL (read-eval-print loop):
 1. Enter expression at prompt
 2. Hit return
 3. Expression is read, checked, and evaluated
 4. Result (or error) is displayed
 5. Repeat from step 1

28

Simple expressions
 The usual arithmetic operations

1 + 2 * 3 (1 + 2) * 3

 Comparisons

1 == 2 ’a’ < ’z’

 Boolean operators

True && False not False

 Standard library functions on numbers

odd 2 odd (2+1) sqrt 4.0 + 2.0 sqrt (4.0 + 2.0)

 Lists and library functions on them

[1,2,3] length [True,True,False] sum [1..10]

29

Expressions have Types
 The type of an expression tells you what kind of

value the expression evaluates to

 In Haskell, read “::” as “has type”

 Examples:

1 :: Int ’a’::Char True :: Bool
1.2 :: Float

 You can ask ghci to tell you the type of an
expression by entering :t expr

30

Type Errors in ghci

Prelude> 'a' && True

<interactive>:7:1: error:
 • Couldn't match expected type ‘Bool’ with actual type ‘Char’
 • In the first argument of ‘(&&)’, namely ‘'a'’
 In the expression: 'a' && True
 In an equation for ‘it’: it = 'a' && True

Prelude> odd 1 + 2

<interactive>:8:1: error:
 • No instance for (Num Bool) arising from a use of ‘+’
 • In the expression: odd 1 + 2
 In an equation for ‘it’: it = odd 1 + 2

31

Definitions and Scripts
 So far, have just been evaluating expressions

 What if we want to

 Define a new constant (i.e. give a name to the result of
an expression)?

 Define a new function?

 Define a type?

 We place definitions in a script file with a .hs
suffix that can be loaded into ghci

32

Simple Script
 Place the following test in a file “defs.hs”

square x = x * x
fact n = product [1..n]
diff x y = if x <= y then y-x else x-y
a = 10

33

Simple Script
 Pass the filename as a command line argument to

ghci, or use the :l command from inside ghci

user$ ghci
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Prelude> :l defs.hs
[1 of 1] Compiling Main (defs.hs, interpreted)
Ok, one module loaded.
*Main> square 12
144
*Main> fact 32
263130836933693530167218012160000000
*Main> diff 1 a
9
*Main> diff a 1
9
*Main>

34

Let’s get things running
 Get to a position where you can run ghci, by either

 installing it on your machine; or

 starting a remote shell on linuxlab.cs.pdx.edu

 Download this file from the course web page:

http://www.cs.pdx.edu/~apt/cs457/hw0.hs

 Start ghci, load hw0.hs, and evaluate the following expression:

 idme “your-name-here” “envvar” where the first string is your name and the
second string is the name of the shell environment variable containing your username, i.e.
“USER” on *nix and “username” on Windows

 This should produce an output file in your current directory called my_identity.txt

 Send mail to the homework account cs457acc@pdx.edu with my_identity.txt as an
attached file

35

http://linuxlab.cs.pdx.edu
mailto:cs457acc@pdx.edu

