CS 45°7/55°7 Functional Programming

Lecture 8
Regions
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The Region Data Type

« A region represents an area on the two-dimensional Cartesian plane.
« Itis represented by a tree-like data structure.

data Region =
Shape Shape primitive shape
Translate Vector Region translated region
Scale Vector Region scaled region
Complement Region inverse of region
Region Union Region -- union of regions
Region "Intersect’ Region -- intersection of regions
Empty
deriving Show

type Vector = (Float, Float)
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Questions about Regions

Why is Region tree-like?
What is the strategy for writing functions over regions?
Is there a fold-function for regions?

— How many parameters does it have?

— What is its type?

Can one define infinite regions?

What does a region mean?
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Sets and Characteristic
Functions

How can we represent an infinite set in Haskell? E.g.:
— the set of all even numbers
— the set of all prime numbers

We could use an infinite list, but then searching it might take a
very long time! (Membership becomes semi-decidable.)

The characteristic function for a set containing elements of type z
is a function of type z -> Bool that indicates whether or not a
given element is in the set. Since that information completely
characterizes a set, we can use it to represent a set:

type Set a a -> Bool

For example:
even :: Set Integer -- Integer -> Bool
even X = (x mod 2) ==
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Combining Sets

« If sets are represented by characteristic functions, then how do
we represent the:

— union of two sets?
— intersection of two sets?
— complement of a set?

* In-class exercise — define the following Haskell functions:
sl "union s2

sl "intersect s2
complement s

 We will use these later to define similar operations on regions.
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Why Regions?

Regions (as defined in the text) are interesting because:

— They allow us to build complex “shapes” from simpler ones.
— They illustrate the use of tree-like data structures.

— They “solve” the problem of having rectangles and ellipses
centered about the origin.

— Their meaning can be given as characteristic functions, since a
region denotes the set of points contained within it.
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Characteristic Functions for
Regions

We define the meaning of regions by a function:
containsR :: Region -> Coordinate -> Bool

Heret ype coordinate = (Float, Float)

Note that containsR r :: Coordinate -> Bool, whichis a
characteristic function. So containsR “gives meaning to”
regions.

Another way to see this:
containsR :: Region -> Set Coordinate

We can define containsR recursively, using pattern matching
over the structure of a Region.

Since the base cases of the recursion are primitive shapes, we also
need a function that gives meaning to primitive shapes; we will
call this function containss.
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Rectangle

Rectangle sl s2 "containsS (x,y)
= let tl1 = s1/2
t2 = s2/2
in -tl<=x && x<=tl && -t2<=y && y<=t2

sl
<
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Ellipse

Ellipse rl r2 "containsS (x,y)
= (x/rl)*2 + (y/r2)*2 <=1

A

r
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The Left Side of a Line

For a ray directed from point a
to point b, a point p is to the left of
the ray (facing from a to b) when:

o
P = (px,py)

isLeftOf :: Coordinate -> Ray -> Bool
(px,py) " isLeftOf  ((ax,ay), (bx,by))
= let (s,t) = (px-ax, py-ay)
(u,v) = (px-bx, py-by)
in s*v >= t*u

type Ray = (Coordinate, Coordinate)
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Polygon

A point p is contained within a
(convex) polygon if it is to the left
of every side, when they are
followed in counter-clockwise
order.

Polygon pts "containsS p
= let shiftpts = tail pts ++ [head pts]
leftOfList = map (isLeftOfp p)
(zip pts shiftpts)
in foldr (&&) True leftOflist
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Right Triangle

RtTriangle sl s2 "containsS p
= Polygon [(0,0),(s1,0),(0,s2)] "containsS p

(0,s2)
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Putting it all Together

containsS :: Shape -> Coordinate -> Bool
Rectangle sl s2 "containsS (x,y)
= let tl = s1/2; t2 = s2/2
in -tl<=x && x<=tl && -t2<=y && y<=t2
Ellipse rl r2 "containsS (x,y)
= (x/rl)*2 + (y/r2)*2 <=1
Polygon pts "containsS p
= let shiftpts = tail pts ++ [head pts]
leftOfList =
map (isLeftOfp p) (zip pts shiftpts)
in foldr (&&) True leftOflist
RtTriangle sl s2 "containsS p
= Polygon [(0,0),(s1,0),(0,s2)] "containsS p
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Defining containsR using
Recursion

containsR :: Region -> Coordinate -> Bool
Shape s "containsR™ p = s "containsS p
Translate (u,v) r "containsR (x,Vy)
r “containsR’ (x-u,y-v)
Scale (u,v) r "containsR™ (x,y)
= r “containsR’ (x/u,y/v)
Complement r "containsR p
= not (r "containsR  p)
rl "Union r2 "containsR p
= rl "containsR p || r2 "containsR p
rl "Intersect r2 "containsR p
= rl "containsR p && r2 "containsR p
Empty "containsR p = False
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An Algebra of Regions

Note that, for any rl1, r2, and r3:

(rl 'Union (r2 'Union r3)) containsR p
if and only if:
(rl 'Union r2) '"Union r3)) "containsR’ p

which we can abbreviate as:

(rl "Union (r2 "Union r3))
= ((rl "Union r2) "Union r3)

In other words, Union is associative.

We can prove this fact via calculation.
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Proof of Associativity

(rl "Union (r2 "Union r3)) containsR p

= (rl ‘containsR’ p) ||
((r2 "Union" r3) ‘containsR’ p)

(rl "containsR™ p) ||
((r2 "containsR p) || (r3 "containsR p))

= ((rl "containsR’ p) || (r2 ‘containsR’ p)) ||
(r3 "containsR’ p)

((rl "Union r2) “containsR p) ||
(r3 "containsR p)

((rl "Union r2) "Union r3) containsR p

(Note that the proof depends on the associativity of (| | ) , which
can also be proved by calculation, but we take as given.)
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More Axioms

There are many useful axioms for regions:
1) Union and Intersect are associative.
2) Union and Intersect are commutative.
3) Union and Intersect are distributive.

4) Empty and univ = Complement Empty are zeros for
Union and Intersect, respectively.

r "Union Complement r = univ and
r "Intersect’ Complement r = Empty

This set of axioms captures what is called a boolean algebra.
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