CS 45°7/55°7 Functional Programming

Lecture 6
Perimeters of Shapes

10/06/05 PSU CS457/557 Fall'05 Tolmach

The Perimeter of a Shape

s2

To compute the perimeter we need a function with
four equations (1 for each Shape constructor).

The first three are easy ...
perimeter :: Shape -> Float 7
perimeter (Rectangle sl s2) 2* (sl+s2)
perimeter (RtTriangle sl s2)

sl + s2 + sqgrt (sl1l”2+s2%2)
perimeter (Polygon pts) =
foldl (+) O (sides pts)

This assumes that we can compute the lengths of the sides of a
polygon. This shouldn’t be too difficult since we can compute the
distance between two points with distBetween.

10/06/05 PSU CS457/557 Fall'05 Tolmach

Recursive Def'n of Sides

sides :: [Vertex] -> [Side]
sides [] [1]
sides (v:vs) aux
where
aux vl (v2:vs’) = distBetween vl v2 : aux v2 vs’
aux vn [] = distBetween vn v : []

-— aux vn [] [distBetween vn v]

 But can we do better? Can we remove the direct recursion, as a
seasoned functional programmer might?

10/06/05 PSU CS457/557 Fall'05 Tolmach

Visualize What’s Happening

B

E D
The list of verticesis: vs = [A,B,C,D,E]
We need to compute the distances between the pairs of points
(A,B), (B,C), (Cc,D), (D,E),and (E,A).
Can we compute these pairs as a list?
[(»A,B), (B,C),(C,D),(D,E), (E,A)]
Yes, by “zipping” the two lists:
[A,B,C,D,E] and [B,C,D,E,A]

as follows:
zip vs (tail vs ++ [head vs])

10/06/05 PSU CS457/557 Fall'05 Tolmach

Zipping Lists

* The zip function (already in the library) can be written:
zip :: [a] ->[b] ->[(a,b)]
zip (x:xs) (y:ys) = (x,y):(zip xs ys)
Zip _ _ =[]
— What happens if the lists are of unequal length?

* This leads to a new version of si des
sides :: [Vertex] -> [Side]
sides vs = map d (zip vs (tail vs ++ [head vs]))
where d (vl,v2) = distBetween vl v2

* This is more elegant than the explicit recursion, but still
verbose; in particular, the need to define d is sad. We

can avoid this in at least two ways.
10/06/05 PSU CS457/557 Fall'05 Tolmach 5

More variants of sides

I. The predefined uncur r y function converts any curried binary
function or operator to a single-argument version on pairs:

uncurry :: (a ->b ->¢) ->(a,b) ->c
uncurry f (x,y) =f x vy

allowing us to write
sides vs = map (uncurry distBetween)

(zip vs (tail vs ++ [head vs]))

II. There is a predefined function zipWith that is just like zip
except that it applies its first argument (a curried function) to
each pair of values. For example:

zipWwith (+) [1,2,3] [4,5,6] = [5,7,9]
So we can write
sides vs = zipWith distBetween
vs (tail vs ++ [head vs])
10/06/05 PSU CS457/557 Fall'05 Tolmach

Perimeter of an Ellipse

There is one remaining case: the ellipse. The
perimeter of an ellipse is given by the summation of
an infinite series. For an ellipse with radii r, > r,:

p=2mr,(l-Zs,)

where s, = 1/4 e?
s, =8;,(21-1)(21-3)e?2 fori>=1
412

e =sqrt(r2-r,2)/r,

GGiven s,, it is easy to compute s, ;.

10/06/05 PSU CS457/557 Fall'05 Tolmach

Computing the Series

nextEl:: Float -> Float -> Float -> Float
nextEl e s 1 = s*(2*i-1)*(2*i-3)* (e”2) / (4*i~*2)

Now we want to compute [s,,s,,s,,

To fix e, let’s define:
aux s 1 = nextEl e s 1

So, we would like to compute:
[s,/

1 ’

2
, 3
4

3

(f s, 2) 3,
(f (£ s, 2)

£
£

S.,; =S, (21-1)(21-3) €?

412

Can we capture
this pattern?

3)

10/06/05 PSU CS457/557 Fall'05 Tolmach

Scanl (scan from the left)

* Yes, using the predefined function scanl:

scanl :: (a -=> b -> a) -> a -> [b] -> [a]

scanl f seed [] seed : []

scanl f seed (x:xs) seed : scanl f newseed xs
where newseed f seed x

* For example:
scanl (+) 0 [1,2,3]
= [0,
(+) 0 1, 1
(+) 1 2, 3
(+) 3 3]
=-[00,1, 3,

 Using scanl, the result we want is:
= scanl aux sl [2 ..]

10/06/05 PSU CS457/557 Fall'05 Tolmach

Sample Series Values

= Drawing Ellipse

.122449,
.0112453,
00229496,
.000614721,
.000189685,

-]

Note how quickly
the values in the
series get smaller ...

10/06/05 I[U OUOTJITT7TIJIT T AT UV TUINTIAUITT

s = scanl aux

is an infinite list (because [2

How far to go?

e It may seem worrisome that

sl [2 ..]

..] is)

* But that's no problem so long as we only ever examine a
finite prefix of the list.

 How many should we take? Only as many as contribute
significantly to the answer, e.g., only as long as they
pass the significance test

signi fi cant
significant x

* (Can use this handy pre-defined function
takeWhile :: (a -> Bool)

takeWhile p []

FI oat -> Bool

= X > 0.0001 — for exanple

takeWhile p (x:xs) | p x

10/06/05

| ot herw se
PSU CS457/557 Fall'05 Tolmach

> [a]

> [a]

[]
X . takeWile p xs

[]

11

Putting it all Together

perimeter (Ellipse rl r2)
| rl > r2 = ellipsePerim rl r2
| otherwise = ellipsePerim r2 rl
where ellipsePerim rl r2
= let e = sqrt (rl*2 - r27~2) / rl
s = scanl aux (0.25*e”*2) [2..]
aux s 1 = nextEl e s 1
significant x = x > epsilon
sSum = sum (takeWhile significant s)

in 2*rl*pi* (1 - sSum)

10/06/05 PSU CS457/557 Fall'05 Tolmach

