CS 45°7/55°7 Functional Programming

Lecture 4
Drawing Shapes

10/05/05 PSU CS457/557 Fall'05 Tolmach

Recall the Shape Datatype

Rectangle Side Side
Ellipse Radius Radius
RtTriangle Side Side
Polygon [Vertex]

deriving Show

type Vertex (Float,Float)
type Side Float
type Radius Float

10/05/05 PSU CS457/557 Fall'05 Tolmach

Properties of Shapes

Note that some shapes are position independent:
— Rectangle Side Side
— RtTriangle Side Side
—Ellipse Radius Radius

On the other hand, a Polygon [Vertex] is defined
in terms of where it appears in the plane.

A shape’s Size and Radius are measured in inches.

On the other hand, the graphics drawing mechanism
of Ch. 3 was based on pixels.

10/05/05 PSU CS457/557 Fall'05 Tolmach

Considerations

Where do we draw position-independent shapes?
— Randomly?
— In the upper left corner (the window origin)?
— In the middle of the window?

We will choose the last option above, by defining the middle of
the window as the origin of a standard Cartesian coordinate
system.

So our new coordinate system has both a different notion of
“origin” (middle vs. top-left) and of “units” (inches vs. pixels).

We will need to define coercions between these two coordinate
systems.

10/05/05 PSU CS457/557 Fall'05 Tolmach

Coordinate Systems

i First window

Shape Coordinate System

(1,0)

or
(1,-1) inches

10/05/05 PSU CS457/557 Fall'05 Tolmach

Units Coercion

inchToPixel :: Float -> Int

Note: simpler alternative to
book's definition.

inchToPixel x round (100*x) j

pixelToInch :: Int -> Float
pixelToInch n fromIntegral n / 100

10/05/05 PSU CS457/557 Fall'05 Tolmach

Translation Coercion

xXWin, yWin
xWin = 600
yWin = 500

xWin2, yWin2 :: Int

XxWin2 = xWin div 2

yWin2 = yWin "div" 2

trans :: Vertex -> Point
trans (x,y) = (xWin2 + inchToPixel x,
yWin2 - inchToPixel y)

10/05/05 PSU CS457/557 Fall'05 Tolmach

Translating Points

trans :: Vertex -> Point
trans (x,y) = (xWin2 + inchToPixel x,
yWin2 - inchToPixel y)

transList :: [Vertex] -> [Point]
transList [] []
transList (p:ps) trans p : transList ps

-— Oor:
translList vs [trans p | p <- vs]

10/05/05 PSU CS457/557 Fall'05 Tolmach

Translating Shapes

shapeToGraphic :: Shape -> Graphic
. Note: first three are
shapeToGraphic (Rectangle sl s2) position independent
= let sl2 = s1/2 and center@d about
s22 = s2/2 the origin
in polygon
(transList [(-sl1l2,-s22),(-sl1l2,s22),
(sl2,s22), (sl1l2,-s22)])
shapeToGraphic (Ellipse rl r2)
= ellipse (trans (-rl,-r2)) (trans (rl,r2))
shapeToGraphic (RtTriangle sl s2)
= polygon (transList [(0,0), (s1,0),(0,s2)1])
shapeToGraphic (Polygon pts)
= polygon (transList pts)

10/05/05 PSU CS457/557 Fall'05 Tolmach

Some Test Shapes

shl,sh2,sh3,sh4 :: Shape

shl Rectangle 3 2

sh2 = Ellipse 1 1.5

sh3 RtTriangle 3 2

sh4 Polygon [(-2.5,2.5), (-1.5,2.0),
(-1.1,0.2), (-1.7,-1.0),
(-3.0,0)]

10/05/05 PSU CS457/557 Fall'05 Tolmach

Drawing Shapes

mainlO
= runGraphics (
do w <- openWindow "Drawing Shapes" (xWin,byWin)
drawInWindow w
(withColor Red (shapeToGraphic shl))
drawInWindow w
(withColor Blue (shapeToGraphic sh2))
spaceClose w

10/05/05 PSU CS457/557 Fall'05 Tolmach

The Result

[Drawing Shapes

10/05/05 PSU CS457/557 Fall'05 Tolmach

Drawing Multiple Shapes

type ColoredShapes = [(Color, Shape)]

shs :: ColoredShapes
shs = [(Red,shl), (Blue,bsh2),
(Yellow,sh3) , (Magenta,hsh4)]

drawShapes :: Window -> ColoredShapes -> IO ()
drawShapes w [] = return ()
drawShapes w ((c,s) :cs)
= do drawInWindow w
(withColor c¢ (shapeToGraphic s))
drawShapes w cs

10/05/05 PSU CS457/557 Fall'05 Tolmach

Multiple Shapes, cont’d

mainll
runGraphics (
do w <- openWindow

"Drawing Shapes™
(xWin,yWin)

drawShapes w shs
spaceClose w

10/05/05 PSU CS457/557 Fall'05 Tolmach

Retrospect

* Can distinguish three different types.
dat a Shape = Pol ygon [Vertex] |
» “Transparent” -- can both construct and pattern match.

» Represents geometric abstraction (no graphical meaning)

type G aphic

polygon :: [Point] -> Gaphic
» Abstract type — can construct instances, but not inspect them.
» Can modify/combine with special operators like wi t hCol or

» Expressed in graphics coordinate system.

type 10 ()
dr awPol ygon :: [Vertex] -> 10 ()

» (We didn't choose to define functions like this.)

» Even more abstract; can only be sequenced and executed.

10/05/05 PSU CS457/557 Fall'05 Tolmach 15

