CS 457/557 Functional Programming

Lecture 18
Monads

12/03/05 PSU C3457/557Fall '05 Tolmach

Reviewing IO Actions

Recall properties of special type of IO actions.
Basic operations have “side-effects”, e.g.

get Char :: | O Char
putChar :: Char -> 10 ()
| SEOF :: | O Bool
Operations are combined into sequences using “do”:
echo :: 10 ()

echo = do b <- 1 sEOF
| f not b then
do {x <- getChar; putChar x; echo}
el se return ()
Operations don't actually happen except at “top level”
where we implicitly perform an operation with type
runfO:: I1Oa ->a -- actually performthe IO

12/03/05 PSU C3457/557Fall '05 Tolmach

“do” and “bind”

« The special notation
do vl <- el
e2

is just “syntactic sugar” for the (ordinary) expression
el >= \vl -> e2

where >>= (pronounced “bind”) is a built-in function
(>>=) :: I0Oa->(a->10b) ->100bDb

which turns a sequence of two IO actions into a single 10
action.

« The value returned by the first action needs to be fed to
the second action; that's why the second argument to >>=
is a function (normally, but not necessarily, an explicit
lambda-definition).

12/03/05 PSU C3457/557Fall '05 Tolmach 3

More about “do”

« Actions of type I0() don't carry a useful value; they can be
sequenced using the simpler function

(>>) :: 10a->10b ->10b
el > e2 = el >>= (\ _ -> e2)

e The full translation of “do” notation is
do { e} = e
do { e; es} = e >> do {es}
do { X <- e; es} = e >>= (\x -> do {es})
do {let ds; es} = let ds in do {es}

« Can always do without do if we want
echo = getChar >>= (\x ->
put Char x >>
echo)
(Note: could drop parentheses)

12/03/05 PSU C3457/557Fall '05 Tolmach 4

Now for a different problem
« Recall code for interpreting simple arithmetic expressions

data Exp = Plus Exp Exp

M nus Exp Exp

Ti mes Exp Exp

Div Exp Exp

Const I nt
eval :: Exp -> Int
eval (Plus el e2) = (eval el) + (eval e2)
eval (Mnus el e2) = (eval el) - (eval e2)
eval (Tines el e2) = (eval el) * (eval e2)
eval (Div el e2) = (eval el) div (eval e2)
eval (Const 1) =1
answer = eval (Div (const 3)

12/03/05

(Plus (Const 4) (Const 2)))

PSU C3457/557Fall '05 Tolmach

Adding Exceptions

e Suppose we want to improve this by trapping attempts to
divide by zero.

data Exception a = Ck a | Error String
eval :: Exp -> Exception Int
eval (Dv el e2) =
case eval el of
k vl ->
case eval e2 of
Kk v2 ->if v2 == 0 then Error “divby0”
else Gk (vl div v2)
Error s -> Error s
Error s -> Error s
-- Plus, Mnus, Tines nust be changed simlarly
eval (Int 1) = Ck |

12/03/05 PSU C3457/557Fall '05 Tolmach 6

Abstracting Exceptional Flow

 This solution exposes a lot of ugly plumbing.

« Notice that whenever an expression evaluates to Error,
that Error propagates up to the final result.

« We can abstract this to a higher-order function

andt hen :: Exception a -> (a -> Exception b) ->
Exception b
e andthen Kk =
case e of
k x -> k X

Error s -> Error s
eval (Plus el e2) =
eval el andthen (\vl ->
eval e2 andthen (\v2 ->
k (vl + v2)))

12/03/05 PSU C3457/557Fall '05 Tolmach

Exception and IO are Monads

Compare the types of these functions:

andt hen :: Exception a -> (a -> Exception b) ->
Exception b

Ck :: a -> Exception a

(>>=) :: 10a->(a->10Db) ->100D
return :: a ->10a

The similarities aren't accidental!

10,Exception, and many other type constructors are
instances of a more general structure called a monad.

Monads are suitable for describing many kinds of
computational effects where there is a concept of
sequencing (captured by >>=).

12/03/05 PSU C3457/557Fall '05 Tolmach

Monads, Formally

« Formally, a monad is a type constructor M a and two
operations

(>>=) :: Ma ->(a->Mb) ->Mb
return :: a -> Ma
« The operations must satisty these three laws:
m >>= (\x -> (2 >>= (\y -> nB)))
= (ml >>= (\x -> n2)) >>= (\y -> nB)
provided that x does not appear in n8

(return x) >= k = k X

m >>= return = m

« Note that we use the same names for the general case as
for IO actions.

12/03/05 PSU C3457/557Fall '05 Tolmach

The Monad Type Class

The Prelude defines a class for monadic behavior:
cl ass Mbnad m where
return :: a ->ma
(>>=) :: ma->(a->mb) ->mb
Unlike other classes we have seen, this one describes a

type constructor class (mis a variable representing a type
constructor, not a type).

The IO type constructor is declared as an instance of this
class, using built-in primitive defns. roughly like this
| nstance Monad | O where
return = builtinReturnl O
(>>=) = builtinBindl O
The “do” notation can be used for any instance of the
Monad class, including user-defined instances.

12/03/05 PSU C3457/557Fall '05 Tolmach 10

Exceptions revisited

« Can make Exception an instance
| nst ance Monad Exception where
return = K
(>>=) = andt hen

« Now can rewrite interpreter code using “do” notation, e.g.
eval (Plus el e2) =
do vl <- eval el
v2 <- eval e2
return (vl+v2)
 In fact, the (very similar) Maybe type is already defined as
an instance in the Prelude:
| nst ance Monad Maybe where
return = Just
(Just x) >>= k = k X
Not hing >>= k = Not hi ng

12/03/05 PSU C3457/557Fall '05 Tolmach 11

Threading Auxiliary Information

« Suppose that we want to extend our (original) interpreter to
produce a trace of operations in the order that they occur,
in addition to a final answer.

eval :: Exp -> String -> (String, Int)
eval (Plus el e2) s =
let (s1,vl) = eval el s
(s2,v2) = eval e2 sl
In (s2 ++ “ +", el + e2)

eval (Const i) s = (s ++ “ “ ++ showi, 1)

(trace, answer) =
eval (Dv (Const 10) (Plus (Const 2) (Const 3))

-- returns (“ 10 2 3 + /", 2)

12/03/05 PSU C3457/557Fall '05 Tolmach 12

Maintaining State

« In imperative language, would be more convenient to
maintain trace info in a global variable (part of the
program state) which is updated by each eval step.

e Avoids need to thread trace to/from each function call.

e Can capture this idiom using a (particular) state monad.
newype SMa = SM(String -> (String,a))
| nst ance Monad SM where
return a = SM (\s -> (s,a))
(SMml) >= k = SM(\s ->let (sl,a) = nl s
SMn2 = k a
in n2 sl)
runSM :: SMa -> (String, a)
runSM (SMm = m*”
trace :: String -> SM ()
trace sO = SM(\s -> (s ++ sO0,())

12/03/05 PSU C3457/557Fall '05 Tolmach

Stateful computation using “do”

« Now can rewrite tracing eval in “do” notation:
eval :: Exp -> SM I nt
eval (Plus el e2) =
do vl <- eval el
v2 <- eval e2
trace “ +7
return (vl + v2)

eval (Const 1) =
do trace (* “ ++ show i)
return i

(trace, answer) =
runSM (eval (Div (Const 10) (Plus (Const 2)
(Const 3)))

-- returns (“ 10 2 3 + /", 2)

12/03/05 PSU C3457/557Fall '05 Tolmach 14

Simulating the IO Monad

e The IO monad is “built-in” to Haskell, i.e., it cannot be
implemented within the language itsellf.

» Special primitives are needed to actually perform the 10 actions and
to sequence them.

» The IO type is abstract (it has no constructors).

« But we can simulate the behavior of IO actions involving
a single input and output stream, using the following type

newtype IOXt = 1OX (Input -> (t, Input, Qutput))
type Input = String
type Qutput = String

« Each IOX function takes the available input as argument,

performs an IO action that consumes some of that input,
and returns:

» the result of the action (of type t)
» the remaining input
» any output produced by the action

12/03/05 PSU C3457/557Fall '05 Tolmach 15

The Simulated I0 Monad

| nst ance Monad | OX where
(IOXm >>= k =
| OX (\input ->
let (t, Input',output) = minput
lOX M = k t
(t', tnput'',output') = m Input'
In (t',input'',output ++ output'))
return x = IOX (\input -> (x,input,””))
get Char :: 1 0OX Char
getChar = ITOX (\(i:18) -> (i,1s,”"))
putChar :: Char -> [OX ()
putChar ¢ = IOX (\is -> ((),1s,[c]))
| SEOF :: | OX Bool
ISEOF = IOX (\input -> (null input,input,””))

12/03/05 PSU C3457/557Fall '05 Tolmach 16

