CS 45°7/55°7 Functional Programming

Lecture 10
Drawing Regions

10/27/05 PSU CS457/557 Fall'05Tolmach

Pictures

 Drawing Pictures
— Pictures are composed of Regions
Regions are composed of shapes
— Pictures add color and layering

data Picture = Region Color Region
| Picture "Over Picture
| EmptyPic
deriving Show

 We need to use SOEGraphics, but SOEGraphics has its own
Region datatype.

import SOEGraphics hiding (Region)
import qualified SOEGraphics as G (Region)

10/27/05 PSU CS457/557 Fall'05Tolmach

Recall the Region Datatype

data Region =
Shape Shape primitive shape
Translate Vector Region translated region
Scale Vector Region scaled region
Complement Region inverse of a region
Region "Union Region -- union of regions
Region "Intersect Region -- intersection of regions
Empty

 How do we draw things like the intersection of two regions, or the
complement of a region? These are hard things to do efficiently.
Fortunately, the G.Region interface uses lower-level support to do
this for us.

10/27/05 PSU CS457/557 Fall'05Tolmach

G.Region

 The G.Region datatype
interfaces more directly to
the underlying hardware.
It is essentially a two-
dimensional array or “bit-
map”’, storing a binary value
for each pixel in the window.

10/27/05 PSU CS457/557 Fall'05Tolmach

Efficient Bit-Map Operations

« There is efficient low-level support for combining bit-maps
using a variety of operators. For example, for union:

n - fa

« These operations are fast, but data (space) intensive, and this
space needs to be explicitly allocated and de-allocated, a job
that seems easier in a much lower-level language.

10/27/05 PSU CS457/557 Fall'05Tolmach

G.Region Interface

createRectangle :: Point -> Point -> G.Region
createEllipse :: Point -> Point -> G.Region
createPolygon :: [Point] -> G.Region

andRegion :: G.Region -> G.Region -> G.Region
orRegion :: G.Region -> G.Region -> G.Region
xorRegion :: G.Region -> G.Region -> G.Region
diffRegion :: G.Region -> G.Region -> G.Region

drawRegion :: G.Region -> Graphic

These functions are defined in the SOEGraphics library module.

10/27/05 PSU CS457/557 Fall'05Tolmach

Drawing G.Region

« To draw things quickly, turn them into a G.Region, then turn the
G.Region into a graphic object, and then use all the machinery we
have built up so far to display the object.

drawRegionInWindow ::
Window -> Color -> Region -> IO ()

drawRegionInWindow w ¢ r =
drawInWindow w

(withColor c¢ (drawRegion (regionToGRegion r)))

« All we need to define, then, is: regionToGRegion.
— But first, let’s define what it means to draw a picture.

10/27/05 PSU CS457/557 Fall'05Tolmach

Drawing Pictures

* Pictures combine multiple regions into one big picture. They
provide a mechanism for placing one sub-picture on top of another.

drawPic :: Window -> Picture -> IO ()

drawPic w (Region c r)
drawPic w (pl "Over p2)

drawRegionInWindow w ¢ r
do drawPic w p2

drawPic w pl
drawPic w EmptyPic return ()

 Note that p2 is drawn before p1l, since we want pl to appear
“over” p2.

10/27/05 PSU CS457/557 Fall'05Tolmach

Summary

 We have a rich calculus of Shapes, which we can draw, take the
perimeter of, and tell if a point lies within.

 We defined a richer data type Region, which allows more complex
compositions (intersection, complement, etc.).

— We gave Region a mathematical semantics as a set of points in
the 2-dimensional plane.

— We defined some interesting operators like containsR which is
the characteristic function for a region.

— The rich nature of Region makes it hard to draw efficiently, so
we use a lower level datatype G.Region, which relies on

features like overwriting and explicit allocation and deallocation
of memory.

— We can think of Region as a high-level interface to G.Region
that hides low-level details.

 We enriched things even further with the Picture type, which adds
color and layering.

10/27/05 PSU CS457/557 Fall'05Tolmach

Turning a Region
into a G.Region

Experiment with a subset of task to illustrate an efficiency problem.
Just consider rectangular shapes and scaling.

regToGReg0 :: Region -> G.Region
regToGReg0 (Shape (Rectangle sx sy))
= createRectangle (trans(-sx/2,-sy/2))
(trans (sx/2,sy/2))
regToGReg0 (Scale (x,y) r)
= regToGReg0 (scaleReg (x,y) r)
where scaleReg (x,y) (Shape (Rectangle sx sy))
= Shape (Rectangle (x*sx) (y*sy))
scaleReg (x,y) (Scale s r)
= Scale s (scaleReg (x,y) r)

10/27/05 PSU CS457/557 Fall'05Tolmach

A Problem

« Consider

(Scale (x1,yl)
(Scale (x2,y2)
(Scale (x3,y3)
(Shape (Rectangle sx sy))
)))

If the scaling is n levels deep, how many traversals does
regToGRegl perform over the Region tree?

10/27/05 PSU CS457/557 Fall'05Tolmach

We've Seen This Before

« Believe it or not we have encountered this problem before.
Recall the definition of reverse:

reverse |[] []
reverse (x:xs) (reverse xs) ++ [x]
where [] ++ zs ZS
(y:ys) ++ zs y : (ys ++ zs)

 How did we solve this? We used an extra accumulating
parameter:

reverse xs = revhelp xs []
where revhelp [] zs ZS
revhelp (x:xs) zs revhelp xs (x:zs)

 We can do the same thing for Regions.

10/27/05 PSU CS457/557 Fall'05Tolmach

Accumulate the
Scaling Factor

regToGRegl :: Region -> G.Region
regToGRegl r = rToNR (1,1) r
where rToGR :: (Float,Float) -> Region -> G.Region
rToGR (x1,yl) (Shape (Rectangle sx sy))
= createRectangle
(trans (-sx*x1/2,-sy*yl/2))
(trans (sx*x1/2,sy*yl/2))
rToGR (x1,yl) (Scale (x2,y2) r)
= rToGR (x1*x2,yl*y2) r

« To solve our original problem, repeat this for all the constructors of
Region (not just Shape and Scale). We also need to handle

translation as well as scaling.

10/27/05 PSU CS457/557 Fall'05Tolmach

Final Version

regToGReg2 :: Vector -> Vector -> Region -> G.Region
regToGReg2 loc sca (Shape s) = shapeToGRegion loc sca s
regToGReg2 (x,y) sca (Translate (u,v) r)

= regToGReg2 (x+u, y+v) sca r
regToGReg2 loc (x,y) (Scale (u,v) r)

= regToGReg2 loc (x*u, y*v) r
regToGReg2 loc sca Empty = createRectangle (0,0) (0,0)
regToGReg2 loc sca (rl "Union r2)

= let grl = regToGReg2 loc sca rl

gr2 = regToGReg2 loc sca r2
in orRegion grl gr2

« Assuming, of course, that we can define:
shapeToGRegion :: Vector -> Vector -> Shape -> G.Region

and write rules for Intersect, Complement etc.

10/27/05 PSU CS457/557 Fall'05Tolmach

A Matter of Style

 While the function on the previous page shows how to solve the
problem, there are several stylistic issues that could make it
more readable and understandable.

The style of defining a function by patterns becomes cluttered
when there are many parameters (other than the one which
has the patterns).

The pattern of explicitly allocating and deallocating (bit-map)
G.Region’s will be repeated in cases for intersection and for
complement, so we should abstract it, and give it a name.

10/27/05 PSU CS457/557 Fall'05Tolmach

Abstract the Low-Level
Bit-Map Details

primGReg loc sca rl r2 op
= let grl = regToGReg loc sca rl
gr2 = regToGReg loc sca r2
in op grl gr2

10/27/05 PSU CS457/557 Fall'05Tolmach

Redo with a Case Expression

regToGReg :: Vector -> Vector -> Region -> G.Region
regToGReg (loc@(x,y)) (sca@(a,b)) shape =
case shape of Pattern
Shape s shapeToGRegion loc sca s rehaming
Translate (u,v) r regToGReg (x+u, y+v) sca r
Scale (u,v) r regToGReg loc (a*u, b*v) r
Empty createRectangle (0,0) (0,0)
rl "Union r2 primGReg loc sca rl r2 orRegion
rl "Intersect r2 primGReg loc sca rl r2 andRegion
Complement r primGReg loc sca winRect r diffRegion
where winRect :: Region
winRect = Shape (Rectangle
(pixelToInch xWin) (pixelToInch yWin))
regionToGRegion :: Region -> G.Region
regionToGRegion r = regToGReg (0,0) (1,1) r

10/27/05 PSU CS457/557 Fall'05Tolmach

Shape to G.Region: Rectangle

shapeToGRegionl
:: Vector -> Vector -> Shape -> G.Region
shapeToGRegionl (1x,ly) (sx,sy) (Rectangle sl s2)
= createRectangle (trans(-sl/2,-s2/2)) (trans (sl/2,s2/2))
where trans (x,y) = (xWin2 + inchToPixel ((x+1lx) *sx),
yWin2 - inchToPixel ((y+1ly) *sy))

sl
<

(xWin,
yWin)

10/27/05 PSU CS457/557 Fall'05Tolmach

Ellipse

shapeToGRegionl (lx,ly) (sx,sy) (Ellipse rl r2)
= createEllipse (trans (-rl,-r2)) (trans (rl, r2))
where trans (x,y) =
(xWin2 + inchToPixel ((x+1x) *sx),
yWin2 - inchToPixel ((y+1ly) *sy))

NS

10/27/05 PSU CS457/557 Fall'05Tolmach

Polygon and RtTriangle

shapeToGRegionl (lx,ly) (sx,sy) (Polygon pts)
= createPolygon (map trans pts)
where trans (x,y) =
(xWin2 + inchToPixel ((x+1x) *sx),
yWin2 - inchToPixel ((y+1ly) *sy))

shapeToGRegionl (lx,ly) (sx,sy) (RtTriangle sl s2)
= createPolygon (map trans [(0,0), (s1,0), (0,s2)])
where trans (x,y) =

(xWin2 + inchToPixel ((x+1x) *sx),
yWin2 - inchToPixel ((y+1ly) *sy))

10/27/05 PSU CS457/557 Fall'05Tolmach

A Matter of Style, 2

« shapeToGRegionl has the same problems as regToGRegl
— The extra parameters obscure the pattern matching.
— There is a repeated pattern: we should give it a name.
shapeToGRegion (lx,ly) (sx,sy) s = case s of
Rectangle sl s2 -> createRectangle (trans (-sl/2,-s2/2))
(trans (sl1l/2, s2/2))
Ellipse rl r2 -> createEllipse (trans (-rl,-r2))
(trans (rl, r2))
Polygon pts -> createPolygon (map trans pts)
RtTriangle sl s2 -> createPolygon
(map trans [(0,0),(s1,0),(0,s2)])
where trans (x,y) = (xWin2 + inchToPixel ((x+1x)*sx),
yWin2 - inchToPixel ((y+ly) *sy))

10/27/05 PSU CS457/557 Fall'05Tolmach

Drawing Pictures,
Sample Regions

draw :: Picture -> IO ()
draw p = runGraphics (
do w <- openWindow "Region Test" (xWin,yWin)
drawPic w p
spaceClose w

(Rectangle 3 2)

(Ellipse 1 1.5)

(RtTriangle 3 2)

(Polygon [(-2.5,2.5), (-3.0,0),
(-1.7,-1.0),
(-1.1,0.2), (-1.5,2.0)]1)

10/27/05 PSU CS457/557 Fall'05Tolmach

Sample Pictures

r3 "Union’ RtTriangle
rl "Intersect’ Rectangle
Complement r2 "Union Ellipse
r4 Polygon

= Region Test

picl Region Cyan reqgl
Mainl = draw picl

Recall the precedence

of Union and Intersect

10/27/05 PSU CS457/557 Fall'05Tolmach

More Pictures

let circle = Shape (Ellipse 0.5 0.5)
square = Shape (Rectangle 1 1)
in (Scale (2,2) circle)
"Union (Translate (2,1) square)
"Union (Translate (-2,0) square)

pic2 = Region Yellow reg2

main2 = draw pic2

10/27/05 PSU CS457/557 Fall'05Tolmach

Another Picture

= Begion Test

pic3 = pic2 "Over picl

main3 = draw pic3

10/27/05 PSU CS457/557 Fall'05Tolmach

Separate Computation From
Action

oneCircle = Shape (Ellipse 1 1)
manyCircles

= [Translate (x,0) oneCircle | x <- [0,2..]]
fiveCircles = o

foldr Union Empty

(take 5 manyCircles)
pic4 = Region Magenta
(Scale (0.25,0.25)
fiveCircles)

main4 = draw pic4

10/27/05 PSU CS457/557 Fall'05Tolmach

Ordering Pictures

pictToList :: Picture -> [(Color,Region)]

pictTolList EmptyPic []
pictToList (Region ¢ r) [(c,r)]
pictTolist (pl "Over p2)

= pictTolist pl ++ pictToList p2

pic6 = pic4 Over pic2 Over picl "Over pich
pictTolList pic6 --->
[(Magenta,?), (Yellow,?), (Cyan,?), (Cyan,?)]

Recovers the Regions from top to bottom.
Possible because Picture is a datatype that can be analyzed.

10/27/05 PSU CS457/557 Fall'05Tolmach

Two ways of drawing a picture

pictToList EmptyPic = [1]
pictTolList (Region c r) = [(c,r)]
pictTolList (pl "Over p2) pictToList pl ++ pictTolist p2

drawPic w (Region ¢ r) drawRegionInWindow w c r
drawPic w (pl "Over p2) do { drawPic w p2

; drawPic w pl}
drawPic w EmptyPic return ()

* Something interesting to prove:
drawPic w = sequence
(map (uncurry (drawRegionInWindow w)))
reverse
pictTolList

10/27/05 PSU CS457/557 Fall'05Tolmach

Pictures that React

Find the topmost Region in a Picture that “covers” the position
of the mouse when a left button click appears.

Search the picture list for the first Region that contains the
mouse position.

Re-arrange the list, bringing that one to the top.

adjust :: [(Color,Region)] -> Vertex ->
(Maybe (Color,Region), [(Color,Region)])
adjust [] p = (Nothing, [1])
adjust ((c,r):regs) p =
if r containsR p
then (Just (c,r), regs)
else let (hit, rs) = adjust regs p
in (hit, (c,r) : rs)

10/27/05 PSU CS457/557 Fall'05Tolmach

Doing it Non-recursively

adjust2 regs p
= case (break (\(_,r) -> r "containsR p) regs)
of
(top,hit:rest) -> (Just hit, topt++rest)
(_,[1) -> (Nothing, [])

This is from the Prelude:

break:: (a -> Bool) -> [a] -> ([a]l,[a])

For example:

break even [1,3,5,4,7,6,12] = ([1,3,5]1,[4,7,6,12])

10/27/05 PSU CS457/557 Fall'05Tolmach

Putting it all Together

loop :: Window -> [(Color,Region)] -> IO ()
loop w regs =
do clearWindow w

sequence [drawRegionInWindow w ¢ r |
(c,r) <- reverse regs]

(x,y) <- getlBP w
case (adjust regs (pixelToInch (x - xWin2),
pixelToInch (yWin2 - y))) of
(Nothing,) -> closeWindow w
(Just hit, newRegs) -> loop w (hit : newRegs)

draw2 :: Picture -> IO ()
draw2 pic = runGraphics (
do w <- openWindow "Picture demo" (xWin,yWin)
loop w (pictToList pic))

10/27/05 PSU CS457/557 Fall'05Tolmach

Try it Out

pl,p2,p3,p4 :: Picture
Region Magenta rl
Region Cyan r2
= Region Green r3
Region Yellow r4

pic :: Picture
pic = foldl Over EmptyPic [pl,p2,p3,p4]
main = draw2 pic

10/27/05 PSU CS457/557 Fall'05Tolmach

A Matter of Style, 3

loop2 w regs
= do clearWindow w
sequence [drawRegionInWindow w c r |
(c,r) <- reverse regs]
(x,y) <- getlBP w
let aux (_,r) = r containsR’
(pixelToInch (x-xWin2),
pixelToInch (yWin2-y))
case (break aux regs) of
(., [1) -> closeWindow w
(top,hit:bot) -> loop w (hit : (top++bot))
draw3 pic = runGraphics (
do w <- openWindow "Picture demo" (xWin,yWin)
loop2 w (pictTolist pic)

10/27/05 PSU CS457/557 Fall'05Tolmach

