
CS 457/557 Homework 6 – due 2pm, Tuesday, November 15, 2005

Hand in all your solutions on paperand email the solutions tocs457acc@cs.pdx.edu. All
the solutions should be placed in a single.hs file, which should be an attachment.

1. Do Hudak exercise 12.2, using the 7-color version ofColor on p. 160. Hint: You can save
yourself a quadratic amount of typing by looking carefully at the full definitions of theOrd and
Enum classes given in Ch. 24. Warning: You donot get a static error message if you fail to define
all the needed members in a class instance declaration – though you will get a politely-phrased
runtime error if you try to use an undefined member.

2. Suppose we define a new class, inspired by the JavaSerialiazable interface, describing
types that can be “flattened” into a compact sequence of bytes(suitable for storing or transmitting
over a network connection) and subsequently can be recovered.

import Word -- unsigned integers of various sizes
type Bytestream = [Word8]
class Serializable a where

serialize :: a -> Bytestream
deserialize :: Bytestream -> (a,Bytestream)

Here serialize x produces a Bytestream containing an encoding ofx, and
deserialize does the inverse: it converts a prefix of its argument to a value of typea and
returns that value together with the remainder of the bytestream. We might use them as follows:

a :: Char
a = ’a’
b :: [Int]
b = [101,104]
c :: Maybe String
c = Just "pdq"
bytes :: Bytestream
bytes = serialize a ++ serialize b ++ serialize c

-- and later on...
a’:: Char
(a’,rest1) = deserialize bytes
b’ :: [Int]
(b’,rest2) = deserialize rest1
c’ :: Maybe String
(c’,_) = deserialize rest2
-- now should have a == a’, b == b’, c == c’

Complete the following instance declarations. Assume thatInt is 32 bits wide. You’ll find the
Bits library useful.

1



instance Serializable Char where ...
instance Serializable Int where ...
instance Serializable a => Serializable (Maybe a) where ...
instance Serializable a => Serializable [a] where ...

3. (from Fasel and Hudak, “A Gentle Introduction to Haskell,” SIGPLAN Notices 27(5), May
1992.)

Consider the following general statement about object-oriented programming languages like C++
or Java:

Classes capture common sets ofoperations. A particularobject may be aninstance
of a class, and will have amethod corresponding to each operation. Classes may be ar-
ranged hierarchically, forming notions ofsuperclasses andsubclasses, and permitting
inheritance of operations/methods. Adefault method may also be associated with an
operation.

If we substitute “type class” for “class” and “type” for “object” this statement yields a valid sum-
mary of Haskell’s type class mechanism.

Yet type classes donot really support object-oriented programming. Why not? Discuss, and give
examples of object-oriented idioms that cannot be written conveniently in Haskell.

(Note: This is obviously an open-ended question. Think seriously about it for awhile, and then try
to write up abrief answer.)

2


