
CS 457/557 Homework 2 – due 2pm, Tuesday, October 11, 2005

Hand in your solutions on paperand email them tocs457acc@cs.pdx.edu. All the programs
should be placed in a single filehw2.hs, which should be sent as anattachment to your email
message. It isnot necessary to show evidence that you have loaded and tested your programs, but
this is of course the only sensible way to make sure that you have found correct answers!

1. Define a function

same :: IO Bool

that (i) reads two lines from standard input; (ii) if the two lines are identical, prints “yes” and
otherwise prints “no”; (iii) returns the valueTrue iff the two lines are identical.

2. Define a function

average :: IO ()

that reads a number (call itn) from standard input, then reads a furthern numbers, and finally prints
out their average on standard output. You can assume that each number appears on a separate line
of the input. You can convert strings to numbers using theread function from the Prelude. Try
to keep the core functionality (computing the average) separate from the IO processing as much as
possible.

3. Define a function

while :: IO Bool -> IO () -> IO ()

such thatwhile test oper performsoper while test equalsreturn True. Here’s an example
of how this function might be used (using thesame function from exercise 1):

while same
(putStrLn " - not different yet")

4. Write a function

me :: IO ()

that uses the graphics functions from Ch. 3 to create a large window and draw a big representation
of the first letter of your name in it. The window should stay visible until the space key is pressed
while the keyboard focus is in the window. Donot use thetext function; instead, use the geomet-
ric shape primitives described on p. 43. Be inventive; use a variety of shapes and colors. (Note:
polyBezier only works on Windows systems.)

5. Write a function

showArea :: IO

1



that (i) opens a 600x500 window; (ii) accepts 4 left-button clicks in the window describing a
quadrilateral, and outlines this quadrilateral in blue; (iii) calculates the area of the quadrilateral;
(iv) draws a red square of equivalent area centered at the origin; (v) waits for a space key to be
pressed before closing the window. You can assume the user only enters quadrilaterals that are not
self-crossing.

Import and use theShape andDraw code from the Chs. 2 and 4 of the book (available on the
course web site) to handle the area calculation and the generation of the result square. The graphics
function

getLBP :: Window -> IO Point

waits for a left button click and returns the corresponding mouse location in pixel coordinates.
You’ll need to write an inverse translation function fromPoint to Vertex.

2


