Modular Lazy Search for
Constraint Satisfaction Problems

Andrew Tolmach
Thomas Nordin

Pacific Software Research Center

Portland State University and Oregon Graduate
Institute

Portland, Oregon

Constraint Satisfaction Problems

« Ubiquitous, important, computationally hard
—Graph coloring and matching
—Scene labeling for vision
—Temporal reasoning
—Resource allocation for planning, scheduling
—etc., etc.

Try to simplify constraints first; then must use brute
force

« Handle binary constraints over finite domains

e Assume nothing known about structure of constraint
graph

—n-Queens looks just like graph coloring

CSP Algorithm Zoo

Qlﬁ Henristies

e = ==

« No agreed-upon common framework.

« Many problems benetfit from tailor-made
combinations of algorithms.

“Re-use” of Imperative Code

lIIH#“JNI%“‘IH""II"“&IHHHII%&UIIHHHII%#

int FC_CBJ(=)
int =;

<

int h .,

if (= > N> <
solution{) :
returnd{(iN) ; }
empty (conf_set[i] D j
for (i = 0O0; i < K:
if (domains[C=]1 [Cil]
continue ;
vwl=1 = 3i:
fail = consistent
if (fail == O)D {I

Jump = FC_<BJ(ZF
if {(Jump !'= =2
return{jump]

restore(=);:

iFf (Ffail

for (j = 1;:; j <
1Ff (checkingl
addd(j .,.conft

foxr (J = 1; jJ < =;

if (checkingl{3jl L=

add(]j,conf_set|

h = max{(conf_set [=]

merge(conftf_set[h] .,d

for (i = =; i >= h
restoreae (i) ;

ot ity Ch Y -

[Kondrak94]

Key:

= identical line

changed line

Lazy Functional Programming View

« Modularize search into separate generate & test
functions...

...communicating via explicit, but lazy, intermediate
data structure.

« Simple program structure
generate :: problem-> [candi dat €]
test :: candidate -> Bool
search = (filter test) . generate

test problem

v '

_ candidate
[solution] «— filter 4[| generate

Binary CSPs in Haskell

Set of variables {1,...,m}
type Var = | nt

Set of possible values {1,...,n}, same for each variable
type Val ue = Int

Assignments associate variables to values
data Assignnent = Var := Val ue

Set of pairwise constraints on assignments

—Defined by a symmetric oracle function
type Rel = Assign -> Assign -> Bool

—If oracle returns true, assignments are consistent

—Each call on this function is a constraint check
:PrOkﬂernjtype CSP = CSP{vars::Int,vals::Int,rel::Rel}

States and Solutions

« A state is a set of assignments
type State = [Assignnent]

A state that assigns all variables is complete.
conplete :: CSP -> State -> Bool
conpl ete CSP{vars} as = (length as == vars)

« A state is consistent if every pair of assignments is.
consistent :: CSP -> State -> Bool
consi stent CSP{rel} [] = True
consi stent CSP{rel} (a:as) =
(all (rel a) as) && (consistent as)

e A solution is a complete, consistent state.
solution :: CSP -> State -> Bool
solution csp as = (conplete csp as)
&% (consistent csp as)

n-Queens Problem

e Assume one queen per column.

e Variables model rows; values model columns.
queens :: Int -> CSP
gueens n = CSP{vars = n, vals = n, rel = safe}
where safe (cl :=rl1) (c2 :=7r1r2) =
(rl /=1r1r2) && abs (cl-c2) /= abs(rl-r2)
e Obtaining all solutions
solver :: CSP -> [State]
sol ver (queens 5)) ->
[[e:=4,d: =1, c: =3, b:=5,a: =2],
|
e Obtaining one solution
head (sol ver (queens 5))

Q

Tree Search

data Tree a = T a [Tree a]

nkTree :: CSP -> Tree State
pruneTree ::(State -> Bool) -> Tree State -> Tree State
| eaves .. Tree State -> [Stat €]

solver :: CSP -> [State]

solver csp = (filter (conplete csp)
collect - | eaves .
pruneTree (not . (consistent csp))
nkTree) csp

prune —%

/

generate

e Equivalent to ordinary imperative backtracking
algorithm.

e Tree is isomorphic to activation history tree for
recursive implementation.

Organizing the Zoo with Contflict
Sets

A contflict set (CS) for a state S is:
— anon-empty subset of the variables in S, such that

— if §’ is any solution state, then there is at least one
variable x in CS such that S(x) # S’ (x).

I.e., at least one of the variables in CS “must change

its value” to reach a solution.
e A state can be extended to a solution iff it has no CS.

 If we know a CS for a state, we can safely prune its
sub-tree.

« Many interesting algorithms can be phrased as
conflict-set computations, allowing them to be
classified and combined.

Contlict Set Labeling Example

13b.o

1x 2

1{C,d}2{a,d}3{b, 4 {a,b,c,d}5{a,d} {a,d}3{b,d} 4{C,d} 5{a,d}

Lic.e} Zae} e} 4d.e} b e} Learlaeee 4x Cbe

e Earliest Conflict e Union Rule

Generic Solver in Haskell

« Parameterized by contlict set labeling mechanism
type ConflictSet = [Var]
type Labeler = CSP -> Tree State ->
Tree (State, ConflictSet)

« Labeling just adds extra stage to solver’s “lazy pipeline”
search :: Labeler -> CSP -> [St at €]
search | abeler csp =
(filter conplete . map fst . | eaves .
prune (not.null.snd) . labeler csp . nkTree) csp

« Example: simple backtracking uses a trivial labeler
bt :: Labeler
bt csp = mapTree f
where f s = (s,inconsistency csp S)
bt sol ver = search Dbt

Contflict-directed Backjumping

« Complicated algorithm, usually phrased as “jumping
back” to a state further up the recursion stack; hard to
show correct.

« We can give a purely local, declarative description.
e Use union rule plus one other fact:

—If a node A has a known conlflict set CS that does
not contain the variable assigned at A, then CS is
also a contflict set for A’s parent.

e View CB]J as way to improve an existing CS labeling
cbj :: CSP -> Tree (State,ConflictSet) ->
Tree (State, ConflictSet)
cbj sol ver = search cbj bt
where cbjbt = cbj csp . bt csp

Backjumping Example

liab,c)

——

Lcar’ aerice fab.cerdp o Gae

Lb 11 2at) 3(c.f) 41e.1 2.1 %%)

Some Other Algorithms

« Forward checking, backmarking and related
algorithms compute CSs for all future assignments at
each node.

storeConflicts:: CSP -> Tree State ->
Tree (State, Cache ConflictSet)
bmcsp = extractConflicts . storeConflicts csp

« Value-ordering heuristics change the order of
branches to put more promising branches on the letft.
hrandom :: Seed -> Tree a -> Tree a
btr :: Seed -> Label er
btr seed csp = bt csp . hrandom seed

e Fail first dynamic variable ordering requires just
slightly richer framework.

e Trivial to mix and match by composing labelers.

By

Mllcs

Miles500

v

Graph coloring

Miles250

Anna

—

First

R
o
Z
—
=
o
=
@
L |
E
<
c
=
o

All
12-queens 16-queens

STITIUNT SATIR]Y

Performance of Modular Lazy CSP

« Compared to imperative algorithms:
—Same number of consistency checks

—Roughly same space (polynomial in problem size)
after plugging “space leaks”

—Roughly 30X slower than optimized C (on kernel)
« Compared to manually fused Haskell code
—Roughly 4X slower (on kernel)

« But fast enough to allow experimentation with
different combinations of algorithms and heuristics.

—Can then recode in imperative style if desired
—Constant factors don’t matter much anyhow.

Fusion by Rewrite Rules

Search pipeline generates lots and lots of tree nodes.
search = | eaves . prune . label . nkTree

e Can reimplement Tree ADT in terms of highly regular
producer and consumer functions:
data Tree a = T a [Tree aj
foldTree :: (a ->[b] ->b) -> Tree a -> b
bui |l dTree :: ([b.(a->[b]->b)->b) -> Tree a
buildTree g =g T

Simple rewrite rule describes fusion
Ok,g. foldTree k (buildTree g) = g k
to avoid building intermediate nodes

Glaslglow Haskell Compiler (GHC) has prototype
mechanism to specify and apply rules.

Improves speed of kernel by >3X, almost to hand-
fus(fd Halslkell, without changing search application
code at all.

Space Leaks

Space behavior of lazy programs is not compositional.

Tiny changes in the way a tree producer is used can
easily change program’s space from linear to
exponential.

Our (ignorant) development cycle:
—Code (hoping for the best)

—Profile (awkward in practice, but tools can be
improved)

—Ponder for awhile (or ask a guru — not too usetul)
—Fiddle with the code and try again
Improving this story is a major research challenge.

— More important than shaving constant factors with
better optimizing compilers.

Conclusions & Future Work

Using modular lazy framework can clarify algorithms
and their key invariants.

New combinations of algorithms for particular

problems can be easily expressed -- often with just
one line of code.

Useful experiments can be conducted, despite the
overheads due to laziness.

Future work:
—More sophisticated algorithms

—Tools/ideas for space behavior and selective
laziness

—Selling to constraints community (without
functional programming?)

