
CS322 Languages and Compiler Design II
Spring 2012

Lecture 9

1

PROCEDURE PARAMETER PASSING

func f(x:integer,y:integer) { ... };
func g(z:@integer,q:@integer) { ... };
var a:@integer := ...;
var w:integer := ...;
.
.
.
f(3,w); ... g(a,a); ... f(17+5,a[3]);
.
.
.

• Do we pass addresses (l-values) or contents (r-values) of variables?

• How do we pass actual values that aren’t variables?

• What does it mean to pass an aggregate value like an array?

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 2

CALL-BY-VALUE (I.E., R-VALUE)

• Each actual argument is evaluated to a value before call.

• On entry, value is bound to formal parameter just like a local variable.

• Updating formal parameter doesn’t affect actuals in calling procedure.

Example (C) :

double hyp(double a,double b) {
a = a * a;
b = b * b;
return sqrt(a+b);

}
r = hyp(a,b); /* values of a,b don’t change in caller */

• Simple; easy to understand!

• Implement by copying.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 3

PROBLEMS WITH CALL-BY-VALUE

• Can be inefficient if value is large.

Example (C): Calls to dotp copy 20 doubles:

typedef struct {double a1,a2,...,a10;} vector;
double dotp(vector v, vector w) {

return v.a1 * w.a1 + v.a2 * w.a2 + ... + v.a10 * w.a10;
}
vector v1,v2;
double d = dotp(v1,v2);

• Cannot affect calling environment directly. (Often a good thing, but not
always!)

Example: calls to swap have no effect:

void swap(int i,int j) {
int t = i ; i = j; j = t;

}
swap(a[p],a[q]); /* contents of array a are unchanged */

• Can at best return only one result, though this might be a record.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 4



CALL-BY-REFERENCE (I.E., L-VALUE)

• Pass the address (l-value) of each actual parameter.

• On entry, the formal is bound to the address, which must be
dereferenced to get value, but can also be updated.

• If actual argument doesn’t have an l-value (e.g., “2 + 3”), either:

- Evaluate it into a temporary location and pass address of temporary, or

- Treat as an error.

• Now swap, etc., work fine!

• Accesses are slower: parameters must remain in memory.

• Lots of opportunity for aliasing problems, e.g.,

func matmult(a,b,c: @@real)
... [* sets c := a * b *]

matmult(a,b,a) [* oops! *]

• Call-by-value-result (a.k.a. copy-restore) addresses this problem, but
has other drawbacks.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 5

HYBRID METHODS

How might we combine the simplicity of call-by-value with the efficiency
of call-by-reference, especially for large values like records and arrays?

Answer depends on what a record or array r-value is in a particular
language. (This is also important for the semantics of assignment.)

• In Pascal, Ada, and similar languages, r-values of both arrays and
records are the actual contents. So passing a record or array by value
means copying the contents, whereas passing by reference doesn’t.
These languages let the programmer specify (in the procedure header)
the method to use on each parameter.

• C always uses call-by-value, but programmers can take the l-value of a
variable explicitly, and pass that to obtain cbr-like behavior:

swap(int *a, int *b) { int t = *a; *a = *b; *b = t; }
swap(&a[p],&a[q]);

Of course, it is the programmer’s responsibility to make sure that the
l-value remains valid (especially when it is returned from a function).

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 6

C/C++ RECORDS

In ANSI C/C++, record (struct or class) r-values are the actual
contents.

To avoid copying C structures, must use pointers:

typedef struct {double a1,a2,...,a10;} vector;
double dotp(vector *v, vector *w) {

return v->a1 * w->a1 + v->a2 * w->a2 + ...
+ v->a10 * w->a10;

}
vector v1,v2;
double d1 = dotp(&v1,&v2);

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 7

C/C++ ARRAYS

On the other hand, C/C++ array r-values are pointers to the contents. In
this example, no doubles are copied on call:

typedef double vector[10];
double dotp(vector v, vector w) {

double d = 0.0; int i;
for (i = 0; i < 10; i++)
d += v[i] * w[i];

return d;
}
vector v1,v2;
double d1 = dotp(v1,v2);

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 8



COMPLEX AND SIMPLE SOLUTIONS

• C++ supports both call-by-reference parameters and explicit pointers:

swap(int &a, int *b) {
int = a; a = *b; *b = t;

}
...
swap(a[p],&a[q]);

Mixing explicit and implicit pointers can be very confusing!

• In Java and fab, r-values of both records (objects) and arrays are
pointers to the actual contents, which are held in the heap. These
languages have only call-by-value, but this doesn’t actually cause
copying, even for record or array values.

• Approach is made more feasible because programmer doesn’t have to
worry about lifetime of heap data, due to automatic garbage collection.

• Clever compilers can decide whether smallish objects should be
heap-allocated or manipulated directly.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 9

SUBSTITUTION

• Can often get the effect we want using substitution, i.e., macro-expansion,
e.g (in C):

#define swap(x,y) {int t; t = x; x = y; y = t;}
...
swap(a[p],a[q]);

• BUT blind substitution is dangerous because of possible “variable cap-
ture,” e.g.,

swap(a[t],a[q])

expands to

{int t; t = a[t]; a[t] = a[q]; a[q] = t;}

Here “t is captured” by the declaration in the macro, and is undefined at
its first use.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 10

CALL-BY-NAME

• Really want “substitution with renaming where necessary” = Algol-60’s
call-by-Name facility.

• Flexible, but potentially very confusing if language supports mutation of
variables.

• But if language has no mutable variables (as in “pure” functional
languages such as Haskell), substitution gives a beautifully simple
semantics for procedure calls.

• Inherently less efficient than call-by-value or call-by-reference, because
much more than a simple value or address needs to be transmitted at
calls.

PSU CS322 SPR’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 11


