CS322 Languages and Compiler Design |l

Spring 2012
Lecture 8

TYPICAL STORAGE ORGANIZATION (Ule)I

¢ Subdivide machine address space by function, access, allocation.

00 e

| I
| STACK |
| |
——————————————— “top”” of stack
| | | (but stacks nearly always
| | | grow DOWN!)
| l |
| | (in VM systems, these pages
| | don’t actually exist)
| T |
| | |
| | I
——————————————— (controlled by sbrk system call)
| |
| HEAP | Managed by allocator/collector.
| |
| | Uninitialized (“*b[lock] s[tatic] s[torage]’”)
| STATIC DATA |------
| | Initialized (in object file)
| |
| CODE | Read-only (in object-file)
| |

0 _______________

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

RUNTIME ENVIRONMENTSI

e Data Representation (mostly covered in CS321)
e Storage Organization

e Procedures (& Stacks)

- Activation Records

- Access to non-local names

- Procedures as first-class values

- Object-oriented dispatch

- Parameter Passing

e Storage Allocation

- Static/Stack/Heap

- Garbage Collection

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

STORAGE CLASSES I

Static Data : Permanent Lifetimes

e Global variables and constants.

o Allows fixed address to be compiled/linked into code.

e No runtime management costs.

e Original FORTRAN (no recursion) used static activation records.
Stack Data : Nested Lifetimes

¢ Allocation/deallocation is cheap (just adjust stack pointer).

e Most architectures support cheap sp-based addressing.

e Good locality for VM systems, caches.

e Algol, C family use stack for activation records.

Heap Data : Arbitrary Lifetimes

¢ Requires explicit allocation and (dangerous) explicit deallocation or garbage
collection.

e Languages (e.g. Lisp, fab) with first-class functions need heap for some
activation-record data, which have non-nested lifetimes.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

PROCEDURES AND ACTIVATIONSI

¢ A procedure definition associates a name with a procedure body and
associated formal parameters.

o A procedure activation is created during execution when the procedure
is called (with actual parameters).

e Activations have lifetimes: the time between execution of the first and
last statements in the procedure.

¢ Activations are either nested (e.g., a,b) or non-overlapping (e.g., b,c):

a() { a
bO; / \
cO; / 0\

} b

cO) {
a0
}

e Procedure f is recursive if two or more activations of £ are nested.
(Note that £ need not call itself directly.)

Q — — 0

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 5

ACTIVATION TREES - EXAMPLE (CONT.)I

(also known as ‘call tree”)
Execution corresponds to depth-first traversal of tree.

Identify activations by function name and actual argument values.

main

\
q(0,8)
\
p(0,8) ! q(5,8)
q(0,3)
e(178) e(2,7) e(4,5) e(0,4) P(5/8) a(5,7) a(9,8)
main PO,3) 4(0,2) a(4,3)
q(0,8) Y %///\\\\ e(5,8)
q(°,3) e(0,3) p(0,2) q(0,0) q(2,2) p(5,7) a(5,5) a(7,7)
p(0,3)
e(0,3) e(0,1) e(5,6)

Control stack keeps track of live activations; it contains activations along
the path from root to “current” activation (see example above).

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 7

ACTIVATION TREES - EXAMPLE '

1 int a[9] = {10,32,567,-1,789,3,18,0,-51};

2 main() {
3 quicksort(0,8);
4 }

5 void exchange(int i, int j) {
6 int x = alil; alil = aljl; aljl = x;
7}

8 int partition(int y, int z) {
9 inti=y, j=z+1;
10 while (i < j) {

11 i++; while (alil < alyl) i++;
12 j--; while (aljl > alyl) j--;
13 if (i < j) exchange(i,j);

14 3}

15 exchange(y,]j);
16 return j;
17 }

18 void quicksort(int m, int n) {
19 if (n > m) {

20 int i = partition(m,n);
21 quicksort(m,i-1);
22 quicksort(i+l,n);
23}
24 }
PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 6

ACTIVATION RECORDS (A.K.A. “FRAMES”)I

Contain data associated with a particular activation of a procedure:

e Actual parameters (maybe in registers).

e Return value (maybe in register).

e Local variables, including temporaries (maybe also saved registers).

e Perhaps a closure pointer or “static link” (= “access link”) to access
non-local variables.

Also includes control information about the calling procedure:
e Return address in caller.

e Perhaps a “control link” (= “dynamic link”) that points to caller’s
activation record.

Use fixed layout (as far as possible) for activation records, so each frame
item can be referenced as:

(item address) = (frame pointer) + (statically-known offset)

Most architectures perform such references efficiently.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 8

ACTIVATION RECORD LIFETIMESI

The lifetime of an activation record corresponds to the longest lifetime of
anything contained in it.

The lifetimes of all contents begin when the activation begins (i.e., when
the procedure is called).

The lifetime of control information ends when the activation’s lifetime
ends (i.e., when the procedure returns).

For most conventional languages, including C, Java, Pascal, etc., the
lifetimes of local data are also contained within the activation’s lifetime.

Thus, since activation lifetimes behave in a stack-like manner, we can
allocate and deallocate activation records on a stack.

(For some languages, like Lisp, fab, etc., data lifetimes don’t obey these
rules; such data cannot be stack-allocated. More later.)

We don’t “push” and “pop” whole activation records; instead, we build
and destroy them in pieces.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

TYPICAL ACTIVATION RECOF{DS'

local variables Last
Frame
caller-saved registers Addressing
argn A argi= M[fp+2+i]

local, = M[fp-j
addresses grow J tfp-31

argl old fp = M[fp]

static link

return address
dynamic link
FP->
local variables
& temporaries
(fixed size)

callee-saved registers

local variables
(dynamic size)
SP->
caller-saved registers

old pc = M[fp+1]

Current
Frame
Common variations:
- order of info
- defn. of "frame"

stack grows
- use of dynamic sizing

Depends on:

- hardware

argn

arg1

- convention

(Next frame will
go here)

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

CALLING SEQUENCEI

= Sequence of steps that, taken together, build and destroy activation
records.

Typically divide into:

e Call sequence — performed by caller.

e Entry sequence — performed by callee.

¢ Exit sequence — performed by either/both.

Key problem: caller and callee know very little about each other.
e Single callee may have many callers.

e Caller may not know callee statically (e.g., C function pointers).

e Caller shouldn’t need to know details of callee’s implementation (may
be compiled separately).

Thus, caller and callee must blindly cooperate via a set of conventions.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 10

TYPICAL SEQUENCE - EXAMPLE (QUICKSORT)I

Stack on entry to e(0,3):
(ignoring registers,
temporaries, and static links)

main

line ?
8 n
0 m
L lined | q(0,8)
4 i
3 n
. 0 m
line 21 q03)
? i
3 Z
0 y
L line20 |
. p(0,3)
4 i
3 i
3 J
0 i
line 15
(0,3)
2 X

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH

REGISTER MANAGEMENTI

One crucial aspect of calling convention is how caller and callee manage
the registers, which they must share.

In order for caller and callee to both use a register, the caller’s value for
that register must be saved in memory (usually on the stack) before the
callee uses the register, and then restored afterwards.

e Who should do that, the caller or the callee?

e Advantage of a caller-save register is that the caller doesn’t need to
save its value if that isn’t needed after the call.

¢ Advantage of a callee-save register is that the callee doesn’t need to
save its value if the caller doesn’t need to use the register.

¢ Typically, the calling convention partitions register set into some of
each. Then compilers try to put short-lived temporaries into caller-save
registers, and longer-lived values that must survive calls into callee-save
registers.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 13

TYPICAL RETURN SEQUENCEI

1. Callee restores callee-save registers.

2. Callee resets sp = fp, thereby popping locals and any
dynamically-sized data.

3. Callee pops dynamic link into fp.
4. Callee does a return, which pops return address into pc.
5. Caller pops static link and args.

6. Caller restores caller-save registers.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 15

TYPICAL CALLING SEQUENCEI

1. Caller pushes caller-save registers.

2. Caller pushes arguments (in reverse order) and closure pointer or
static link (if any).

3. Caller executes call instruction, which pushes pc (details vary
according to machine architecture).

4. Callee pushes fp as dynamic link and sets fp = sp.
5. Callee adjusts sp to make room for fixed-size locals.
6. Callee pushes callee-save registers.

7. Callee can adjust sp dynamically during procedure execution to
allocate dynamically-sized data on the stack.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 14

COMMON VARIATIONSI

e Hardware instructions may do more or less implicit stack manipulation,
depending on machine architectures. (Example: x86 pushes return
address on stack, but many machines put it in a register instead, leaving
callee to push it if necessary.)

e Arguments (up to some fixed number) may be passed in registers
instead of on the stack.

e Return value is almost always returned in a register (if small enough to
fit).

o If everything is the frame has statically fixed size, there’s no real need
for a frame pointer or a dynamic link — though they can still be handy.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 16

X86-64 CALLING CONVENTIONSI

o First 6 integer arguments are passed in %rdi, %rsi, %rdx, %rcx, %r8,
%r9.

o First 8 float arguments are passed in SSE registers

e Any additional arguments are passed on the stack.

e Integer return value goes in %rax; float return value in %xmmoO.

e Registers %rbx, %rbp,%r12,%r13,%r14,%r15 are callee-save.

e The remaining integer registers, and all float registers, are caller-save.

e Use of a frame pointer is optional.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 17

HEAP STORAGE FOR ACTIVATION DATAI

If an inner procedure is fully “first-class” it can outlive the outer procedure in which
it is defined, e.g.:

{
func plus (const n:integer) -> (integer -> integer) {
func plusn (x:integer) -> integer {
return x+n
};
return plusn
};

var f :

plus(2);
£ (40)

var a

}

main
/\
/ 0\
/ \
plus(2) £(40) == plusn(40) (requires valuen =?2)

Activation of plus is no longer live when £ is called!

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 19

ACCESS TO NON-LOCAL VARIABLESI

e In Pascal, Ada, Haskell, fab, etc., we can nest procedure declarations
inside other procedure declarations. (Cannot do this in C!)

e Parameters and local variables of outer procedures are visible within
inner procedures.

e More precisely, the variables associated with the most recent still-live
activation of the outer procedure are visible within inner procedures.

o References to these variables must be compiled to code that can locate
the corresponding values at runtime.

e The lifetime of such a variable is the maximum lifetime of any inner
functions that uses it. So the storage for the variable must live that long
too.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 18

HEAP STORAGE FOR ACTIVATION DATAI

e If n is stored in activation record for plus and activation-record is
stack-allocated, it will be gone at the point where £ needs it!

e Languages supporting first-class nested procedures (e.g., Lisp,
Scheme, ML, Haskell, fab, etc.) solve problem by using heap to store
variables like n.

e Simple solution: Just put all activation records in the heap to begin with!
(Will be garbage collected when the Garbage collection is a must!)

e More refined solution, which we are using for fab: Represent procedure
values by a heap-allocated “closure” record, containing the procedure’s
code pointer and values of the non-local (“free”) variables referenced by
the procedure.

e Involves taking copies of the values of non-local variables, so only
works properly when values are immutable.

e If language requires support for mutation, compiler can introduce an
extra level of indirection.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 20

STACK STORAGE AND ACCESS LINKSI

In many languages, such as Pascal and its descendents, functions are
not fully first-class: they cannot be treated as values that can be returned
or stored.

So if procedure f is declared inside g, then £ can only appear as
descendent of g in the activation tree.

This allows us to stack-allocate activation records as usual, and still
guarantee that non-local variables will still exist when they are needed.

A standard way of doing this is using access links.

For example, consider quicksort again, written using nested (but not first
class) functions in fab...

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 21

ACCESS LINKS FOR NON-LOCAL VARIABLES'

e Each activation record can include an access (or static) link pointing
to the statically-enclosing activation record.

o If p is nested immediately inside g, then the access link in p’s activation
record points to the most recent live activation record of q.

e Non-local v is found by following one or more access links to the
activation record that contains v, and then taking the appropriate offset
within that record.

o If v is declared locally at depth n,,, and accessed in p at depth n,, then
the number of access links to follow is just (n, — n,).

e This number, and the offset are fully known at compile time.

e Access links are initialized during the calling sequence; usually
calculated by the caller and passed as a “hidden” first argument.

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 23

1 {
2 var al := Q@integer{9 OF 0};
3 var a2 := Qinteger{99 OF 0};
4 func sort (n:integer, const a:@integer) {
5 func exchange (i:integer,j: integer) {
6 x := alil; alil := aljl; alj]l := x
7 }
8 func quicksort (m:integer, n:integer) {
9 func partition (y:integer,z:integer) -> integer {
10 var i := y; var j:= z+l;
11 .
12 while ali]l < alyl do i := i + 1;
13 .
14 exchange(y, j);
15 return j;
16 };
17 if n > m then {
18 var i := partition(m,n);
19 quicksort(m,i-1);
20 quicksort(i+1i,n);
21 X
22 };
23 quicksort(0,n-1)
24 %}
25 sort(9,al);
26 sort (99,a2)
27 }
PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 22

EXAMPLE WITH STATIC LINKS: QUICKSORTI

Stack on entry to e(0,3):

N

- line ? r.a.
R dl. <- fp for main
/ a a
: 9 n
sl
Tl line 31 ra.
— ;- I dl. <- fp for sort(9,a)
8 n
J 0 m
| sl
\ [line28 | ra.
L e dl. <-fp for quicksort(0,8)
’ 4 i
3 n
0 m
sl.
R line 23 r.a.
- - dl. <- fp for quicksort(0,3)
2 i
3 z
y
sl
line 22 r.a.
e I dl. <- fp for partition(0,3)
4 i
3 i
3 J
0 i
I ——
sl
line 17 r.a.
e dl. <- fp for exchange(0,3)

[Note: return address line numbers in this diagram are incorrect.]

PSU CS322 SPR'12 LECTURE 8 (© 1992-2012 ANDREW TOLMACH 24

