
CS322 Languages and Compiler Design II
Spring 2012

Lecture 4

1

SEMANTICS OF PROGRAMMING LANGUAGES

Semantics = “Meaning”

Programming language semantics describe behavior of a language
(rather than its syntax).

All Languages have informal semantics:

• e.g., “This expression is evaluated by evaluating the operator expression to
obtain the function closure value, and then the argument expressions left-to-right
to obtain actual parameter values, and finally executing the function with its
formal parameters bound to the actual parameter values.” (fab manual)

• Usually in English; imprecise; assumes implicit knowledge.

Idea of formal semantics:

• Describe behavior in terms of a formalism.
• To be useful, formalism should be simpler and/or better-understood
than original language.
• Possible formalisms include logic, mathematical theory, abstract
machines

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 2

WHY BOTHER WITH FORMAL SEMANTICS?

Want a precise description of language behavior that can be used by
programmer and implementor.

Formal semantics gives a machine-independent reference for
correctness of implementations.

Can be used to prove properties of languages.

• E.g., Security property: a well-typed program cannot “dump core” at
runtime.

• May improve language design by encouraging “cleaner” semantics
(much as BNF aided language syntax design).

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 3

VARIETIES OF SEMANTICS

Traditionally, three rough categories:

Operational Semantics

• Describe behavior in terms of an operational model, such as an
abstract machine with a specified instruction set.

Axiomatic Semantics

• Describe behavior using a logical system containing specified axioms
and rules of inference.

Denotational Semantics

• Describe behavior by giving each language phrase a meaning
(“denotation”) in some mathematical model.

None of these approaches is entirely satisfactory (esp. compared to BNF
approach to syntax). No one “best” approach – different forms may be
useful for different purposes.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 4

SYNTAX AND SEMANTICS

All these kinds of semantics are structured around language syntax.

Useful formalisms try to be compositional: the meaning of the whole is
based on the meaning of the parts:

• semantics specifies meaning of primitive elements of the language
(AST leaves)

• and of combining elements in the language (AST internal nodes)

Semantics can be described or computed by defining an attribute
grammar over the language.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 5

OPERATIONAL SEMANTICS

Define behavior of language constructs by describing how they affect the
state of an abstract machine.

Abstract machine generally defined by a finite state and a set of legal
state transitions (instructions).

• Like a real machine, only simpler.

Semantics is specified by giving a translation from the source language
to the instruction set of the abstract machine (a compiler!)

Machine can be high-level (complicated states and instructions) or
low-level (simple states and instructions).

• The lower the machine’s level, the more is explained by the semantics,
but the more complicated they get.

• Note similarity to choice of intermediate code level.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 6

OPERATIONAL SEMANTICS: SIMPLE EXAMPLE

Source language AST Grammar

• Designed for easy readability

prog := stm
stm := stm1 ’;’ stm2
stm := VAR ’:=’ exp
stm := PRINT exp
exp := NUM
exp := VAR
exp := exp1 ’+’ exp2
exp := exp1 ’*’ exp2

• Ambiguity of the grammar doesn’t matter, since it’s for ASTs.

Very simplistic: no control flow, procedures, datatypes, etc.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 7

SIMPLE ABSTRACT MACHINE

State =
• Stack of Values
• Global Environment mapping VARs to VALUEs
• Current Instruction Pointer (IP)

Control = List of Instructions:
ADD, MULT

pop top two values from stack, add/multiply them, and push result
PUSH value

push specified value onto stack
FETCH var

fetch value of specified var from environment and push onto stack
STORE var

pop top value from stack and store into specified var
PRINT

pop top value from stack and print it
HALT

Initially: empty stack & environment; IP at start of list

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 8

SYNTAX-DIRECTED SEMANTICS DEFINITION

Use (synthesized) attributes to build list of instructions.

Notation: [x1, . . . , xn] is the list containing elements x1,. . .,xn and x@y is
the concatenation of lists x and y.

prog := stm prog.p := stm.p @ [HALT]

stm := stm1 ’;’ stm2 stm.p := stm1.p @ stm2.p

stm := VAR ’:=’exp stm.p := exp.p @ [STORE VAR.var]

stm := PRINT exp stm.p := exp.p @ [PRINT]

exp := NUM exp.p := [PUSH NUM.num]

exp := VAR exp.p := [FETCH VAR.var]

exp := exp1 ’+’ exp2 exp.p := exp1.p @ exp2.p @ [ADD]

exp := exp1 ’*’ exp2 exp.p := exp1.p @ exp2.p @ [MULT]

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 9

EXAMPLE PROGRAM

!"#$!#%& '()*+($""*,-%.*/+0*123456*789:;<=*!>>?@"%%. !!

!"#$%&'()*+,*#$

!"#
$

%&'
(

!"#
$

)*+,

-./

-./ 012 -./

34)0562

%&'
7

-./ -./

34)

34)

34)

34)

!"#
$

8#9%:0562!"#
$

012

0;2

'48A4;:B*

<<<$<56<71<

<<<$<56<$<;<(1

<<<8#9%:<$

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 10

!"#$!#%& '()*+($""*,-%.*/+0*123456*789:;<=*!>>?@"%%. !"

!"#$%&'()*#+,&#)-.+

'48A4;:B*

!!!"!#$!%&!

!!!"!#$!"!'!(&

!!!)*+,-!"

./*
"

,01
(

./*
"

2345

678

678 9&: 678

;<29#$:

,01
%

678 678

;<2

;<2

;<2

;<2

./*
"

)*+,-9#$:./*
"

9&:

9':
!"#$%&'() !*+,&'-)

!*+,&'.)

!*+,&'./',$01#'()

!"#$%&'()

!"#$%&'(/'
*123$)

!"#$%&'(/
*+,&'-/
455)

!"#$%&'(/'*+,&'-/
455/',$01#'()

!"#$%&'(/'*+,&'-/'455/
,$01#'(/'"#$%&'(/'*123$)

!*+,&'./',$01#'(/
"#$%&'(/'*+,&'-/'455/
,$01#'(/'"#$%&'(/'*123$)

!*+,&'./',$01#'(/

"#$%&'(/'*+,&'-/'455/
,$01#'(/'"#$%&'(/'*123$/&46$)

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 11

SAMPLE EXECUTION

Instructions Stack Environment
- {}

PUSH 3 3 {}
STORE a - {a = 3}
FETCH a 3 {a = 3}
PUSH 2 3,2 {a = 3}
ADD 5 {a = 3}
STORE a - {a = 5}
FETCH a 5 {a = 5}
PRINT - {a = 5} prints 5 !!
HALT - {a = 5}

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 12

EXAMPLE PROOF USING OPERATIONAL SEMANTICS

Theorem: The stack never underflows

Lemma 1: If the stack has initial size n, then the net effect of executing
the instructions corresponding to an expression is to increase the stack
size to n + 1. Moreover, at no point during such execution is the stack
size < n.
• Proof: By induction. NUM and VAR are base cases; + and * are inductive
cases.

Lemma 2: If the stack has initial size n, then the net effect of executing
the instructions corresponding to a statement is to leave the stack at size
n. Moreover, at no point during such execution is the stack size < n.
• Proof: By induction, with aid of Lemma 1. PRINT and := are the base
cases; ’;’ is the inductive case.

Proof of theorem: Since the program starts with a stack of size 0 and
executes a single statement, Lemma 2 proves that the stack never has
size < 0.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 13

AXIOMATIC SEMANTICS

Describe language in terms of assertions about how statements affect
predicates on program variables.

The assertion

{P} S {Q}

says that if P is true before the execution of S, then Q will be true after
the execution of S.

Examples:

{y ≥ 3} x := y + 1 {x ≥ 4}

{y = 0 ∧ x = c}
while x > 0 do
y := y + 1;
x := x - 1

end
{x = 0 ∧ y = c}

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 14

AXIOMS AND RULES OF INFERENCE

Axioms are simple assertions guaranteed to be true in the language, e.g.:

{P [y/x]} x := y {P}

where P [y/x] means P with every instance of x replaced by y.

Rules of inference are rules for deriving a true assertion from other true
assertions, e.g.:

{P}S{Q} {Q}T{R}
{P} S;T {R}

{P ∧B}S{P}
{P} while B do S {P ∧B}

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 15

USES OF AXIOMATIC SEMANTICS

May be used for proving that a program implements a specification

• i.e. given axioms and rules of inference of the language, show that a
given assertion about a given program is true.

Example: Prove

{k > 0} Prog {sum =
∑k

n=1 n}

• where Prog is

i := k; sum := k;
while i > 1 do

i := i - 1;
sum := sum + i

end;

• Can be done by repeated application of axioms and rules. Axiomatic
methods become somewhat unwieldy in presence of side- effects and
aliasing (multiple names for one storage location). For handling real
programs, automated ”proof assistant” is essential.

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 16

EXAMPLE PROOF OF CORRECTNESS IN ANNOTATION FORM

{k > 0}
{k =

∑k
n=k n ∧ k > 0}

i := k;

{k =
∑k

n=i n ∧ i > 0}
sum := k;

{sum =
∑k

n=i n ∧ i > 0}
while i > 1 do

{sum =
∑k

n=i n ∧ i > 0 ∧ i > 1}
i := i - 1;

{sum =
∑k

n=i+1 n ∧ i > 0}
sum := sum + i

{sum =
∑k

n=i n ∧ i > 0}
end;

{sum =
∑k

n=i n ∧ i > 0 ∧ i > 1}
{sum =

∑k
n=1 n}

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 17

DENOTATIONAL SEMANTICS

Program statements and expressions denote mathematical functions
between abstract semantic domains.

• In particular, the program as a whole denotes a function from some
domain of inputs to some domain of answers.

Semantics are specified as a set of denotation functions mapping pieces
of program syntax to suitable mathematical functions.

• Functions are attached to corresponding grammatical constructs using
synthesized attribute grammars.

Proper definition of semantic domains is complicated subject – we’ll
ignore.

Common notation: λx.e is an anonymous function with argument x and
body e.

λx.x+1 λy.if y < 0 then -y else y

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 18

DENOTATIONAL SEMANTICS OF STRAIGHT-LINE PROGRAMS

Semantic domains:

V = Int (values)
Ide (identifiers)
S = Ide → V (stores)
Exp = S → V (expressions)
Stm = S → S (statements)

Denotation functions (from syntactic class to semantic domain):

I: ID → Ide
N: NUM → V
E: exp → Exp
S: stm → Stm

Auxiliary functions:

plus: V × V → V
update: (S × Ide × V) → S

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 19

DENOTATION FUNCTIONS

stm → ID := exp S[stm] = λs.update(s,I[ID],E[exp]s)

stm → stm1;stm2 S[stm] = λs.S[stm2](S[stm1]s)

exp → NUM E[exp] = λs.N[NUM]

exp → ID E[exp] = λs.s(I[ID])

exp → exp1 + exp2 E[exp] = λs.plus(E[exp1]s,E[exp2]s)

exp → (exp1) E[exp] = E[exp1]

N[NUM] = NUM.num

I[ID] = ID.ident

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 20

FACTS ABOUT STORES AND UPDATES

Definition of update:

update = λ(s,id,v).

λid1.if id = id1 then v else s id1

Fact A: For any s0, x, i:
(update(s0,x,i)) x

= (λid1.if x = id1 then i else s0 id1) x

= (if x = x then i else s0 x)

= i

Fact B: For any s0, x, i, j :
update(update(s0,x,i),x,j) = update(s0,x,j)

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 21

CALCULATING THE DENOTATION OF A PROGRAM

!"#$!#%& '()*+($""*,-%.*/+0*123456*789:;<=*!>>?@"%%. "$

!"#$%#"&'()*&+,*-,(.&"&'.(*./*"*01.)1"23

!"#
$

%&'

%&' ()*

+,-(./*

012
3

%&'

012
4

+,-

+,-

+,-

!"#
$

(./*!"#
$

(5*

!!"#

!$"%&'($)*$+(+*!!"#,*$,,-

= !$"%&'($)*$+(+#,

!."/!&"&*(,

!0"&1%!**!&"&*(,,*0,+*!."/,*0,,

= !0"&1%!*0*(,+/,

!%"%&'($)*%+(+*!0"&1%!*0*(,+/,,*%,,

= !%"%&'($)*%+(+&1%!*%*(,+/,,

!2"*!%"%&'($)*%+(+&1%!*%*(,+/,,,**!$"%&'($)*$+(+#,,*2,,

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 22

SIMPLIFYING DENOTATION

λv.(λu.update(u,a,plus(u(a),2)))((λt.update(t,a,3))(v))

= λv.(λu.update(u,a,plus(u(a),2)))(update(v,a,3))

= λv.update(update(v,a,3),a,plus((update(v,a,3))(a),2))

= λv.update(update(v,a,3),a,plus(3,2)) (using Fact A)
= λv.update(update(v,a,3),a,5)

= λv.update(v,a,5) (using Fact B)

PSU CS322 SPR’12 LECTURE 4 c© 1992–2012 ANDREW TOLMACH 23

