CS322 Languages and Compiler Design |l
Spring 2012
Lecture 1

COMPILER BACK-END TASKSI

Starting from type-checked abstract syntax for source language...
o Simplify expressions and statements into flat goto/label form

o Fix location of variables & temps in memory & registers

e Generate machine instructions

e Manage machine resources

e Interact with O/S, runtime system

...generate machine code for specific target architecture.

Or, build interpreter for higher-level language features.

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 3

LANGUAGES AND COMPILER DESIGN PART II'

e Semantics

e Interpreters

e Runtime Organization

e Intermediate Code Generation
e Machine Code Generation

e Optimization

Topics

Project

e Build fab Interpreter
e Complete fab Compiler for X86-64

Themes

e Mapping from high-level to low-level

¢ Implementing resource management

e Integration with OS and hardware environment
e Syntax-directed techniques

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 2

Translator Structure Language Design Issues

Source code ‘
Y

Lexical Analysis

Syntax
Tokens y
Abstract syntax | Data Types

O i csif

stract syntax : Cs322@/
.nterpreter

ntermediate Code Generatlo Control Structures

Intermedlate COde _____ Optlmlzatlon)y 'ZizZiﬁi _Zlei)eelljflegneiel‘m ST T T
Machine Code Generation

Runtime Models

Machine code v

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 4

TRANSLATION TO ABSTRACT SYNTAX TREESI INTERMEDIATE CODE GENERATION

Emit intermediate code/represenation (“IR”) from abstract syntax or

a :=if ¢ > 7 and b = e :
directly from parser .
Source code y P
then 3 * (d + e) Advantages:
else —c * (d + 2) e Keeps more of compiler machine-independent
e Facilitates some optimizations
@ Typical examples:

AST e Postfix stack code

/' \ e Trees or directed acyclic graphs (DAGs)
if

e Three-address code (quadruples, triples, etc.)
q * * Abstracts key features of machine architectures
an
AN 3/ \+ _/ \+ e €.9., sequential execution, explicit jumps
> = . .
/ \ /\ / \ ‘ 7\ e but hides details
d e d 2 e e.g., # of registers, style of conditionals, etc.
c 7T b e
Many possible levels of IR; some compilers use several

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 5 PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH

“THREE-ADDRESS CODE” - A TYPICAL LINEAR IR' 3-ADDRESS CODE EXAMPLEI

Generate list of “instructions” C= -

e Each has an operator, up to 2 args, and up to 1 result / \ if

a
. / l \
e Instructions can be labeled and /*\ /*\
¢ Operands are names for locations in some abstract memory (e.g., >/ \= 3 /+\ T /+\
symbol table entries) / \7 1:/ AN d e c 4 2
C e
Examples of instructions:
if ¢ > 7 goto L1
A:=B copy goto L2
A=BopC binary ops Ll: if b = e goto L3
A=0pB unary ops -Linearized L2: t1l :=d + 2
goto L jumps Nested conditionals t2 := -c
if A relop B goto L conditional jumps expanded (badly) t3 = £1 * €2
param A procedure call setup “Temporaries for all goto L4
intermediate results L3: t1 :=d + e
call PN procedure call €3 1= 3 * t1
return N procedure return L4: a := &3

All] array dereference

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 7 PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH

MACHINE-CODE GENERATION I

“Read” IR and generate assembly language (symbol or binary).
Must cooperate with IR to define and “enforce” runtime environment.
Must deal with idiosyncrasies of target machine,

e e.g., instruction selection

and perform resource management,

e €.9., register assignment.

Lots of case analysis, especially for complex target architectures.
Can do by hand, but hard.

Tools limited but sometimes useful; mainly based on pattern matching

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 9

“OPTIMIZATION” '

Improve (don’t perfect) code by removing inefficiencies:
e in original program

e introduced by compiler itself

Can operate on source, IR, object code.

Local Improvements

e Example: changing

if ¢ > 7 goto L1

goto L2
L1:
L2:
to
if ¢ <=7 goto L2
L1:
L2:

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 1

SAMPLE MACHINE CODEI

Assumes a global; b, c args; d, e locals.

lllustrates register conventions, condition code use, arithmetic tricks, ...

movl Yedi, %ebx L2:

movl Yesi, %ri2d movl $-2, %eax

cmpl $7, %ri2d movl Y%ri2d, %edx

setg %dl subl %r13d, %eax

cmpl %ebx, %ecx imull %eax, %edx

sete Jal L4:

testb %al, %dl movq _a@GOTPCREL (%rip), ‘%rax
je L2 movl Y%edx, (%rax)

leal (%ri13,%rcx), %eax
leal (%rax,l%rax,2), %edx
jmp L4

(initially b:%edi c:%esi d:%rl13 e:’%ecx)

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 10

OPTIMIZATION (CONTINUED) I

“Global” Improvements
e Example: changing

for (i := 0; i < 1000; i++)
ali] := bxc + i;

to
tl := b * c;
for (i = 0; i < 1000; i++)
alil = t1 + i;
Interprocedural improvements
e Example: Inlining a function

Most of a modern compiler is devoted to optimization.

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 12

INTERPRETATION '

Simulate execution of program (source, AST, or other IR) on an abstract
machine.

Implement abstract machine on a real machine.
Inputs to interpreter are

e Program to be interpreted

e Input to that program

Simpler than compiling and takes no time up front, but interpreted code
runs (~10X) more slowly than compiled code.

Much more portable than real machine code (as for Java).

Helps with semantic definition.

PSU CS322 SPR'12 LECTURE 1 (© 1992-2012 ANDREW TOLMACH 13

