
CS322 Languages and Compiler Design II
Spring 2012
Lecture 11

1

CODE OPTIMIZATION

• Really “improvement” rather than “optimization;” results are seldom
optimal.

• Remove inefficiencies in user code and (more importantly) in
compiler-generated code.

• Can be applied at several levels, chiefly intermediate or assembly code.

• Can operate at several levels:

- “Peephole” : very local IR or assembly

- “Local” : within basic blocks

- “Global” : entire procedures

- “Interprocedural” : entire programs (maybe even multiple source files)

• Theoretical tools: graph algorithms, control and data flow analysis.

• Practical tools: few.

• Most of a serious modern compiler is devoted to optimization.

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 2

PEEPHOLE OPTIMIZATIONS

• Look at short sequences of statements (in IR or assembly code)

• Correct inefficiencies produced by excessively local code generation
strategies.

• Repeat!

• Same effect can often be achieved by using smarter (but hence more
complex) code generation in the first place.

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 3

EXAMPLE PEEPHOLE OPTIMIZATIONS

• Redundant instructions

mov %f0, %f2

mov %f0, %f2 ; ok to remove if in same basic block

• Unreachable code

LOOP IF x > 2 THEN EXIT ELSE X := X + 1 END;

L1: IF X > 2 GOTO L2

GOTO L3

L2: GOTO L4

GOTO L1 ; never executed

L3: X := X + 1

GOTO L1

L4: ...

• Flow-of-control fixes: remove jumps to jumps, e.g.,

L1: IF X > 2 GOTO L4

X := X + 1

GOTO L1

L4: ...

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 4

MORE PEEPHOLE OPTIMIZATIONS

• Algebraic Simplification

x + 0 = 0 + x = x
x - 0 = x
x * 1 = 1 * x = x
x/1 = x

• Strength Reduction

Target hardware may have cheaper ways to do certain operations.

E.g., multiplication or division by a power of 2 is better done by shifting.

imull $8, %l2 ⇒ sall $3, %l2

• Use of machine idioms

Target hardware may have quirks/features that make certain sequences
faster:

imull $8,%l2
addl %l3,%l2
addl $20,%l2 ⇒ leal 20(%l3,%l2,8)

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 5

LOCAL (BASIC BLOCK) OPTIMIZATIONS

• Typically applied to IR, after addressing is made explicit, but before
machine dependencies appear.

• Most important: Common Subexpression Elimination (CSE)

i := j + 1
a[i] := a[i] + j + 1

Avoid duplicating the code for j+1 or the addressing code for a[i]. One
technique: build directed acyclic graph (DAG) for basic block.

• Copy Propagation

a := b + 1 ⇒ a := b + 1

c := a c := a ; maybe can now omit

d := c d := a

• Algebraic Identities

E.g., use associativity and commutativity of +

a := b + c ⇒ a := b + c

b := c + d + b b := b + c + d ; now do CSE

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 6

CSE EXAMPLE Source: i := j + 1
a[i] := b[i] + j + 1

Naive IR: After CSE:

t1 := addr j t1 := addr j
t2 := *t1 t2 := *t1
t3 := const 1 t3 := const 1
t4 := t2 + t3 t4 := t2 + t3 ; j + 1
t5 := addr i t5 := addr i
*t5 := t4 *t5 := t4

t6 := addr b t6 := addr b
t7 := addr i
t8 := *t7
t9 := const 4 t9 := const 4
t10 := t8 * t9 t10 := t4 * t9
t11 := t6 + t10 t11 := t6 + t10 ; &(b[i])
t12 := *t11 t12 := *t11
t13 := addr j
t14 := *t13
t15 := const 1
t16 := t14 + t15 ; j + 1
t17 := t12 + t16 t17 := t12 + t4
t18 := addr a t18 := addr a
t19 := addr i
t20 := *t19
t21 := const 4
t22 := t20 * t21
t23 := t18 + t22 t23 := t18 + t10 ; &(a[i])
*t23 := t17 *t23 := t17

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 7

GLOBAL (FULL PROCEDURE) OPTIMIZATION

Loop optimizations are most important.

• Code motion: “hoist” expensive calculations above the loop.

• Use induction variables and reduction in strength. Change only one
index variable on each loop iteration, and choose one that’s cheap to
change.

Also continue to apply CSE, copy propagation, dead code elimination,
etc. on global scale.

Based on control flow graph.

Example: Computing dot product (assuming i,a local; b,c global). Local
CSE already performed within basic blocks.

a = 0;

for (i = 0; i < 20; i++)

a = a + b[i] * c[i];

return a;

Example IR...

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 8

B1 t1 := const 0
t2 := addr a
*t2 := t1
t3 := addr i
*t3 := t1

B2 L2:
t5 := addr i
t6 := *t5
t7 := const 20
if t6 >= t7 goto L4

B3 t8 := addr a
t9 := *t8
t10 := addr b
t11 := addr i
t12 := *t11
t13 := const 4
t14 := t12 * t13
t15 := t10 + t14 ; &(b[i])
t16 := *t15
t17 := addr c
t18 := t17 + t14 ; &(c[i])
t19 := *t18
t20 := t16 * t19 B4 L4:
t21 := t9 + t20 t24 := addr a
*t8 := t21 t25 := *t24
t22 := const 1 return t25
t23 := t12 + t22
*t11 := t23
goto L2

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 9

EXAMPLE: EFFECTS OF GLOBAL OPTIMIZATION

• Promote locals a and i to registers.

• Induction variable: replace i with i*4, thus reducing strength of
per-loop operation; adjust test accordingly.

• Hoist all constants out of loop.

Results on example:
B1 t1 := const 0 t1 := const 0

t2 := addr a
*t2 := t1 t9 := t1 ; a
t3 := addr i
*t3 := t1 t6 := t1 ; i * 4

t13 := const 4
t7 := const 80
t8 := addr a
t10 := addr b
t17 := addr c

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 10

B2 L2: L2:
t5 := addr i
t6 := *t5
t7 := const 20
if t6 >= t7 goto L4 if t6 >= t7 goto L4

B3 t8 := addr a
t9 := *t8
t10 := addr b
t11 := addr i
t12 := *t11
t13 := const 4
t14 := t12 * t13
t15 := t10 + t14 t15 := t10 + t6
t16 := *t15 t16 := *t15
t17 := addr c
t18 := t17 + t14 t18 := t17 + t6
t19 := *t18 t19 := *t18
t20 := t16 * t19 t20 := t16 * t19
t21 := t9 + t20 t9 := t9 + t20
*t8 := t21
t22 := const 1
t23 := t12 + t22 t6 := t6 + t13
*t11 := t23
goto L2 goto L2

B4 L4: L4:
t24 := addr a
t25 := *t24
return t25 return t9

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 11

INTERPROCEDURAL OPTIMIZATION

Procedure inlining is most important.

• Replace a procedure call with a copy of the procedure body (including
initial assignments to parameters).

• Applicable when body is not too big, or is called only once.

Benefits:

• Saves overhead of procedure entry/exit, argument passing, etc.

• Permits other optimizations to work over procedure boundaries.

• Particularly useful for languages that encourage use of small
procedures (e.g. OO state get/set methods).

Cost:

• Risk of “code explosion.”

• Doesn’t work when callee is not statically known (e.g. OO dynamic
dispatch or FP first-class calls).

PSU CS322 SPR’12 LECTURE 11 c© 1992–2012 ANDREW TOLMACH 12

