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MACHINE CODE GENERATIONI

e Instruction Selection

e Register Allocation and Assignment
e Optimization

Issues:

e Complexity of Target Machine

e Level of Translation: expression, statement, basic block, routine,
program?

e Management of Scarce Resources
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APPROACHES TO INSTRUCTION SELECTION I

For RISC targets, translate one IR instruction to one or more target
Instructions.

For CISC targets, translate several IR instructions to one target
iInstruction.
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Example Source: a := b (assuming a,b in frame)

3-addr IR: tl1l = fp-12
t2 = *xtil
t3 = fp+8
*t3 = t2
Typical Tree IR: mov
/\
/N

mem mem

+ +

/N 7\
fp 8 fp -12

extreme RISC: add %fp,-12,%r3
1d [%r3], %r7
add %fp,8,%r4
st %r7, [hra]

moderate RISC: 1d [%fp-12], %r7
st %r7, [hfp + 8]

CISC: move [/fp-12], [/fp+8]
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X86-64 INSTRUCTION SELECTION FOR FABI

e Assume we have permanently allocated each IR NamedReg and
TempReg to an X86 register or a stack slot.

e S0 when generating code for an IR operation, need to be able to cope
with either register or memory operand in each position

e X806 instructions are much more constrained:

mov S,d d can be reg or mem; s can be reg, imm, or mem (but not if d is)
add s,d d := d + s; d can be reg or mem, s can be reg, imm, or mem (but not if d is)
sub s,d d := d — s; d can be reg or mem, s can be reg, imm, or mem (but not if d is)

imul s,d d := d * s; d must be reg, s can be reg, imm, or mem
idiv s %rax = Y%rdx:%rax div s and %rdx :=%rdx:%rax mod s;
s must be reg or mem
cmp s1,s2  test sense is “backwards”;
s1 can be reg, imm, or mem; ss; can be reg or mem (but not if s; is)

e Can use these utility functions:

X86.0perand gen_source_operand (IR.Source rand, X86.Size size,
boolean imm_ok, X86.Reg temp)
X86.0perand gen_dest_operand (IR.Dest rand, X86.Size size)
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e Remember to keep track of sizes:

IR.Type.BOOL — X86.Size.B = 1 byte (registers %al, etc.)
IR.Type.INT — X86.Size.L = 4 bytes (registers %eax, etc.)
IR.Type.PTR — X86.Size.Q = 8 bytes (registers %rax, etc.)

Register names must match instruction suffixes, or you get an assembler
error. Immediates and memory operands are sized automatically.

e One pattern for generating 2-addr code from 3-addr code:

IR.sub a,b,c X86.mov a,c canomitifa=c
X86.sub b,c

But whatif b = ¢ ?1?

IR.sub a,b,b X86.mov a,b canomitifa=>b
X86.sub b,b Oops!

Must be smarter in this case, or dumber in the regular case.
Hint: Use %r10 and %r11 as temporaries within IR instructions.

e There are many possible improvements, especially when dealing with
constants or commutative operators.
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REGISTER ALLOCATION AND ASSIGNMENTI

Task: Manage scarce resources (registers) in environment with imperfect
iInformation (static program text) about dynamic program behavior.

General aim is to keep frequently-used values in registers as much as
possible, to lower memory traffic. Can have a large effect on program
performance.

Variety of approaches are possible, differing in sophistication and in
scope of analysis used.

Allocator may be unable to keep every “live” variable in registers; must
then “spill” variables to memory. Spilling adds new instructions, which
often affects the allocation analysis, requiring a new iteration.

If spilling is necessary, what should we spill? Some heuristics:
e Don't spill variables used in inner loops.
e Spill variables not used again for “longest” time.

e Spill variables which haven’t been updated since last read from
memory.
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LIVENESSI

To assign regqisters effectively for a whole procedure, we need to look at
the uses of each variable across expressions and statements.

To see how long to keep a given variable (or temporary) in a register,
need to know the range of instructions for which the variable is live.

A variable or temporary is live immediately following an instruction if its
current value will be needed in the future (i.e., it will be used again, and it
won’t be changed before that use).

Example:
| temps live after instruction:
movI 3, $T2 1 $T2
movl $T2, $T3 1 $T2 $T3
addI $T3, 4, $T4 I $T2 $T4
addI $T2, $T4, $T4 ! $T4
movI $T4, $RET ! (nothing)

It's easy to calculate liveness for a consecutive series of instructions
without branches, just by working backwards.

PSU CS322 SPR’12 LECTURE 10 (© 1992-2012 ANDREW TOLMACH 8



LIVENESS (CONTINUED) I

But if a value can stay in a register over a jump, things get harder, e.g.:

temps live after instruction:

|
1 movI 0, $T1 I $T1 $T3
2 L1: addI $T1, 1, $T2 ! $T2 $T3
3 addI $T3, $T2, $T3 ! $T2 $T3
4 mull $T2, 2, $T1 I $T1 $T3
5 cmpI $T1, 1000 I $T1 $T3
6 j1 L1 | $T1 $T3
7 movI $T3, $RET ! (nothing)

To calculate liveness in this case requires iterative data flow analysis
and the result is only conservative approximation to true liveness.

The live range of a variable is the set of instructions which leave it live.
E.g. here live range of $T1 is {1,4,5,6}; live range of $T3is {1,...,6}.
Basic idea: If two variables have disjoint live ranges, they can occupy the
same physical register.

So in both examples, 2 physical registers suffice to allocate all
temporaries without spilling.
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LINEAR SCAN ALLOCATIONI

Using live ranges turns out to be computationally expensive (more later).

A simple alternative is to approximate each live range by a live interval.
This is the consecutive interval of instructions between the first and last
use of each temporary. Example:

| temps live after instruction:

!
1 movI 0, $T1 I $T1 $T3
2 L1: addI $T1, 1, $T2 ! $T2 $T3
3 addI $T3, $T2, $T3 ' $T2 $T3
4 mull $T2, 2, $T1 1 $T1 $T3
5 cmpI $T1, 1000 I $T1 $T3
6 i1 L1 1 $T1 $T3
7 movl $T3, $RET ! (nothing)

Live ranges: $T1: 1,4,5,6 $T2:2,3 $73:1,2,3,4,5,6

Live intervals: $T1: [1,6] $T2: [2,3] $T3: [1,6]

(Revised) Basic idea: if two temporaries have non-overlapping live
intervals, they can occupy the same physical register.
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LINEAR SCAN ALLOCATION ALGORITHM DETAILSI

1. Compute startpointfi] and endpoint]i] of live interval i for each
temporary. Store the intervals in a list in order of increasing start
point.

2. Initialize set active := () and pool of free registers = all usable
registers.

3. For each live interval ¢ in order of increasing start point:

(a) For each interval j in active, in order of increasing end point

o If endpointfj] > startpointfi] break to step 3b.
e Remove j from active.
e Add registerfj] to pool of free registers.

(b) Set register/i] .= next register from pool of free registers, and
remove it from pool. (If pool is already empty, need to spill.)

(c) Add i to active, sorted by increasing end point.
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LINEAR SCAN ALLOCATION FOR FABI

e For HW4, the live interval computation code is already provided for you.
It maps each IR.Reg operand to its live interval.

e Note that if an operand is defined but not used, its live interval is empty,
and it does not appear in the map.

e When allocating a register in step 3(b), need to consider different
reqgister classes (callee-save vs. caller-save). Simple strategy: use
callee-save regqister if operand’s live range includes a call instruction;
otherwise use caller-save register if available. (This way, we never have
to worry about performing caller saves at all.)

e The Arg and RetReg operands must be pre-allocated to fixed registers.
These registers can still be used to store other operands with
non-overlapping ranges, but at step 3(b) we must look ahead to make
sure that the interval doesn’t overlap a pre-allocated interval.

e Once a spill is necessary, simply commit the spilled operand to a stack
slot once and for all.
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MINIMIZING DEMAND FOR REGISTERSI

A compiler can sometimes make choices that reduce the register
pressure, i.e. the number of registers needed simultaneously.

One example is choice of evaluation order when linearizing expression
trees.

Example: Assume a RISC-like load-store instruction set. If we compute
left child first, need 4 regs, but doing right child first needs only 3.

(a+b) - ((c+d) - (e+f)) -

load a,rl

load c,rl

/ \ load b,r2 load d,r2
/ \ add r1,r2,r1 add r1,r2,r1

+ - load c,r2 load e,r2

/ \ / \ load d,r3 load f,r3
a b/ \ add r2,r3,r2 add r2,r3,r2
+ + load e,r3 sub r1,r2,r1

/ \ / \ load f,r4 load a,r2

c d e f add r3,r4,r3 load b,r3

sub r2,r3,r2
sub rl1,r2,ri1

add r2,r3,r2
sub r2,rl1,r1
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MINIMIZING REGISTERS NEEDED TO EVALUATE EXPRESSION TREESI

Key idea (Sethi & Uliman): At each node, first evaluate subtree requiring
largest number of registers to evaluate. Can then save result of this
evaluation in a register while doing other subtree.

1. Label each node with minimum number of registers needed to
evaluate subtree.

risc_label(t) / \

if isLeaf(t) then /\
t->label = 1 (depends on machine architecture) +2 -3

else /' \ /\
label (t->left) al bl/ \
label (t->right) +2 +2
if (t->left->label == t->right->label) /N /\

t->label = t->left->label + 1 cl alel £l

else

t->label = max(t->left->label,
t->right->label)

2. Use labels to guide order of code emission; emit code for
higher-numbered subtree first.
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OTHER ISSUES IN TREE EVALUATION ORDERI

e Some machines allow one operand to be a complex expression, while
the other must be a register, which also holds the result (“accumulator”
style):

add 37,r0O ; r0O <- r0 + 37
add [b], ri1 ; rl <-rl + *b
sub r0,rl ; rl <-r1 - 10

These machines have different Sethi-Ullman numbering, e.g., right
leaves might require no temporary registers at all.

e Can use associativity to make trees “less bushy, ” e.g.

+3 +2
/ \ / \
/ \ becomes +2 gl
+2 +2 / \
/N /\ +2 !
al blel gl / \
al bl
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CONTROL-FLOW GRAPHSI

To compute liveness and other properties of an entire procedure, we use
a control-flow graph.

In simplest form, control flow graph has one node per statement, and an
edge from n; to ns if control can ever flow directly from statement 1 to
statement 2.

We write pred|n| for the set of predecessors of node n, and succ|n| for
the set of successors.

(In practice, usually build control-flow graphs where each node is a basic
block, rather than a single statement. More later.)

Example....
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a=0 |
L: b a 1 1V
c=c+b | ——————- |
a=bx*2 | a=0|
if a < N goto L | -————-- I
return c I
| | —————-
2V Vv
| ———————=——- |
| b=a+ 1|
| ——=—————- |
|
3V
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LIVENESS ANALYSIS USING DATAFLOW ANALYSISI

Working from the future to the past, we can determine the edges over
which each variable is live.

In the example:

bisliveon2 — 3 and on 3 — 4.

aislivefromonl — 2,on4 —5,andon5 — 2 (butnoton 2 — 3 — 4).
c is live throughout (including on entry — 1).

Can see that two registers suffice to hold a,b,c.
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DATAFLOW EQUATIONS I

We can do liveness analysis (and many other analyses) via dataflow
analysis.

A node defines a variable if its corresponding statement assigns to it.

A node uses a variable if its corresponding statement mentions that
variable in an expression (e.g., on the rhs of assignment).

For any variable v, define

e def|v| = set of graph nodes that define v

e use|v] = set of graph nodes that use v
Similarly, for any node n, define

e def|n| = set of variables defined by node n;

e use|v] = set of variables used by node n.
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SETTING UP EQUATIONSI

A variable is live on an edge if there is a directed path from that edge to a
use of the variable that does not go through any def.

A variable is live-in at a node if it is live on any in-edge of that node; it is
live-out if it is live on any out-edge.

Then the following equations hold:

injn] = useln| U (out|n| — def|n])
outin] = | in[s]
seSUCC[n]

We want the least fixed point of these equations: the smallest in and out
sets such that the equations hold.

PSU CS322 SPR’12 LECTURE 10 (© 1992-2012 ANDREW TOLMACH 20



SOLVING FIXED-POINT EQUATIONSI

We can find this solution by iteration:

e Start with empty sets

e Use equations to add variables to sets, one node at a time.
e Repeat until sets don’'t change any more.

Adding additional variables to the sets is safe, as long as the sets still
obey the equations, but inaccurately suggests that more live variables
exist than actually do.
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EXAMPLE SOLUTIONI

For correctness, order in which we take nodes doesn’t matter, but it turns
out to be fastest to take them in roughly reverse order:

1st 2nd 3rd

node | use def | out in | out in | out In
6 C C C C
S a C ac|ac ac|ac ac
4 b a ac bc|ac Dbc|ac bc
3 bc cC bc bc |bc bc|bc Dbc
2 a b bc ac |bc ac |bc ac
1

d acC C acC C acC C

Implementation issues:

e Algorithm always terminates, because each iteration must enlarge at
least one set, but sets are limited in size (by total number of variables).

e Time complexity is O(N?) worst-case, but between O(N) and O(N?) in
practice.
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BASIC BLOCKS I

The control flow between adjacent non-branching instructions is trivial.
We can use this fact to reduce the number of nodes required for a control
flow graph, and hence speed up (by a constant factor) the algorithms that
work on it.

e Basic Block = sequence of instructions with single entry & exit.

e If first instruction of BB is executed, so is remainder of block (in order).
e T0 calculate basic blocks:

1) Determine BB leaders (—) :

(
(a) First statement in routine

(b) Target of any jump (conditional or unconditional).

(c) Statement following any jump.

(What about subroutine calls?)

(2) Basic block extends from leader to (but not including) next leader (or
end of routine).
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BASIC BLOCK EXAMPLEI

prod := 0;
i = 1;
while i <= 20 do

prod := prod + ali] * Db[i];

i:=1i+1
end

—

L

00 NO Ol WN -

—

. prod := 0

.1 =1

. if i > 20 goto 14
. tl =1 x4

t2 := addr a

. t3 = *x(t2+t1)
. t4 =i % 4
. th := addr b

t6 := *x(t5+t4)
t7 := t3 * t6

. prod := prod + t7
1= 1i+1
. goto 3

Once we've discovered the basic blocks, we build a CFG in which each

node is an entire basic block.

Most dataflow algorithms reduce to very simple form within a block. For
example, for liveness, it is easy to compute the in and out sets of each
block by a simple backward pass over its instructions.
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STATIC VS. DYNAMIC LIVENESSI

Consider the following graph:

1V
| -———————- |
| a = bxb |
| ————————- |
|
2V
| ————————- |
| ¢ = a+b |
| === |
|
3 V
| - === |
| ¢ > b 7 |
| - === |
/ \
4 V 57V
| -———————- | |- |
| return a | | return c |

Is a live-out at node 27 It depends on whether control flow ever reaches
node 4.
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STATIC LIVENESS (CONTINUED)I

A smart compiler could answer no.

A smarter compiler could answer similar questions about more
complicated programs.

But no compiler can ever always answer such questions correctly. This
IS a consequence of the uncomputability of the Halting Problem.

So we must be content with static liveness, which talks about paths of
control-flow edges, and is just a conservative approximation of dynamic
liveness, which talks about actual execution paths.
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HALTING PROBLEMI

Theorem There is no program H that takes an input any program P and
input X, and (without infinite-looping) returns true if P(X) halts and false
if P(X) infinite-loops.

Proof Suppose there were such an H. From it, construct the function
F(Y)=1if H(Y,Y) then (while true do ()) else 1
Now consider F'(F).

e If F'(F') halts, then, by the definition of H, H(F, F') is true, so the then
clause executes, so F'(F') does not halt.

e But,if F'(F') loops forever, then H(F, F) is false, so the else clause is
taken, so F'(F') halts.

Hence F'(F) halts if any only if it doesn’t halt.

Since we've reached a contradiction, the initial assumption is wrong:
there can be no such H.
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REACHABILITY PROBLEM I

Corollary No program H'(P, X, L) can tell, for any program P, input X,
and label L within P, whether L is ever reached on an execution of P on
X.

Proof If we had H’, we could construct H. Consider a program
transformation 7' that, from any program P constructs a new program by
putting a label L at the end of the program, and changing every halt to
goto L. Then H(P,X)=H'(T(P),X,L).
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REGISTER INTERFERENCE GRAPHS I

Recall that linear scan allocation uses a very conservative approximation
of each register’s lifetime by reducing it to a single live interval.

A more precise approach is to use the live range set, e.g.:

Live after instr.

1d a,t0 ; a:to t0

1d b,t1 ; b:tl t0 t1

sub t0,t1,t2 ; tit2 t0 t2

1d c,t3 ; €:t3 t0 t2 t3

sub t0,t3,t4 ; u:té t2 t4

add t2,t4,t5 ; v:th t4 tb
add t5,t4,t6 ; d:t6 t6

st t6,d

The resulting demand on registers can be described by a register
interference graph, which has

- a node for each logical register.

- an edge between two nodes if the corresponding registers are
simultaneously live.
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COLORING INTERFERENCE GRAPHS I

Interference Graph Example:

/ \
t0 ———- tl t2
| //
\/ /
|/ /
t3 t4------ t5 t6

A coloring of a graph is an assignment of colors to nodes such that no
two connected nodes have the same color. (Like coloring a map, where
nodes=countries and edges connect countries with common border.)

Suppose we have k physical registers available. Then aim is to color
interference graph with & or fewer colors. This implies we can allocate
logical registers to physical registers without spilling.

In general case, determining whether a graph can be k-colored is hard
(N.P. Complete, and hence probably exponential).

But a simple heuristic will usually find a k-coloring if there is one.
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GRAPH COLORING HEURISTICI

1. Choose a node with fewer than £ neighbors.

2. Remove that node. Note that if we can color the resulting graph with &
colors, we can also color the original graph, by giving the deleted node a
color different from all its neighbors.

3. Repeat until either

e there are no nodes with fewer than k£ neighbors, in which case we must
spill; or

e the graph is gone, in which case we can color the original graph by
adding the deleted nodes back in one at a time and coloring them.

In our example, heuristic finds a 3-coloring. There cannot be a 2-coloring
(why not?).

Each “color” corresponds to a physical register, so 3 registers will do for
this example.
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