CS 322 Homework 4 — due 1:30pm, June 7, 2012

Generating X86-64 Assembly Code for fab

Working individually or in teams of two, write an X86-64 codenerator for théab IR. The IR is the same as the one
used in assignment 3. In principle, your generator shouldkwa all IR programs; however, in practice it suffices for
it to work on IR programs generated frdiab programs using the reference IR code generator from assignsn

Don’t worry about the runtime behavior of programs thatrafteto allocate more heap space than is available at
runtime, or that pass more than six arguments to a function.

The code generator should read.arr file specified on the command line, use the existing parsidg @oi r . j ar

to convert it to internal form, and then generate assembie @n standard output, which is normally captured into
an. s file. This file can then be assembled and linked géx with a “standard library’f abl i b. o to make an
X86-64 executable. When executed, programs should belsatheeg did under the various interpreters in previous
assignments.

Runtime errors such as array bounds violation should belbdry generating code to call the appropriate built-in
runtime library function, e.g.ar r ay _bounds, as detailed below.

As usual, a “correct” generator is available in the jar K&6gen. j ar ; it can be run on fild 0o. i r by typing
java -classpath X86gen.jar:ir.jar X86CGenDriver foo.ir > foo.s

It is not necessary that the code you generate be identieahéd the referenc¥86gen generates, but it must have
the same observable behavior when assembled and executed.

Linkage and Library

Each function of a&ab program should generate a corresponding assembly landuagion of the same name,
but with two leading underscores added. In particularfétemain function should generate an assembler function
___MAI N. Thef abl i b. c file contains an ordinary @ai n function that simply invokes__MAI N, and returns its
integer return value as the completion status code (alwafcy @fab program). Thus a complete executable can be
obtained by assembling yous file, compilingf abl i b. ¢, and linking them together, e.qg.:

gcc -nm64 -g -o foo foo.s fablib.c

IO and heap memory allocation are performed by issuing @& giycedure calls to library functions also provided in
fabl i b. c. These functions arer ead_i nt (which returns an integer result valuejr i t e_i nt (which takes an
integer argument)wr i t e_st ri ng (which takes the address of a string as argument), t e_bool (which takes a
boolean byte value as an argument),i t e_.new i ne (which takes no argumentspounds _er r or (which takes
no arguments, issues the messageay bounds vi ol ati on to st derr, and exits), ni | _poi nt er (which
takes no arguments, issues the messde poi nt er der ef er encetost derr, and exits), andal | oc (which
takes an integer size argument in bytes and returns thesslof¢éhe allocated storage).

MacOS configuregcc to associate the assembly-level natheo with the C-level namé oo. For convenience of
those developing code on MacOS, there is a separate verfsfaxbd i b. ¢ that is identical except that it drops the
leading underscores from function names (sigce will put them back on again).

Implementation

Source filel R j ava documents the IR representation. It is the same as befospedttat each IR instruction line
now has an initial line number (as it did in the original HW3Jsien, but not the revised version). File . j ar
contains classes for representing, parsing, and gengil&irit is slightly modified from the HW3 version to include

all the files needed for IR parsing (so frontend.jar shoultbnger be needed at all), and the parser had been modified

to expect (and ignore) the instruction line numbers. SofilecX86. | ava contains support classes for emitting X86-
64 assembly code. Filei veness. j ava contains support classes for calculating live ranges ofpBrands. File
X86CenDri ver . j ava contains a top-level driver.

Your code generator must be defined by a cl&88Gen that compiles and links with r . j ar, and thex86,
Li veness andX86GenDri ver classes provided; you must not change these classes. TdwrsX86Gen class
must implement the method

static void genProgran(l R Program p)

There is no provision for your generator to throw catchableeptions, but it can throsr r or exceptions or use
assert s to report uncatchable errors. Remember to use e flag toj ava to enable assertion checking at
runtime.

Your generator class should be placed in a separat¥8it&=en. j ava, which can be compiled using
javac -classpath .:ir.jar X86Cen.java

assuming thax86. j ava andLi veness. j ava (or their class files) are already in the current directorgkaleton
for aworking generator is available ¥X86GenO. j ava; you are encouraged to use this as the basis for your generato
Places that need attention are marked with “..." or “I!!I" ionoments.

An important task of the generator is to miaR. NanedReg andl R. TenpReg operands to X86 registers or mem-
ory locations. It is simplest to build this mapping once aond dll for the entire function; this approach doesn’t
always produce great code, but it is adequate for our puspd$ewever, the register allocator in the skeletotos
simplistic: once a register is used for one IR operand, iteigen re-used for another one, even if the two operands
have disjoint live ranges. You should implement a lineansmagraph-coloring register allocator instead; the linear
scan approach is easiest. You can use the methods inldlagmness. j ava to calculate which temporaries are
live after each instruction, and to calculate the corredpumlive intervals. In particular, you can use the method
cal cul at eLi vel nt er val s which calculates the live interval associated with eaclistegused in a function,
and returns aBp from | R. Regs toLi veness. | nt erval s. The latter objects have two integer fiektsar t
andend, representing the interval by its first and last indices i filnction’scode array. The skeleton generator
uses this map to enumerate all the operands that appear farttion, but it doesn’t make much use of the range
information; you can do better.

The generated code must obey the X86-64 calling and registaye conventions, which are detailed in the reference
document on the course web page. There is no need to use aganter; variables in the frame can be accessed
relative to the stack pointer, which seldom needs to chamtfeeimiddle of a function (and always in a very controlled
way). Any callee-save registers used by a function need foulsbed onto the stack at the start of the function and
popped back off at the end. It is simplest not to use callee-sagisters across calls at all; that way, there is no need
to generate code to save and restore them around calls.

You will also want to reserve at least two registeé¥s 10 and% 11 are most suitable) as local temporaries for use
inside the translation of a single IR instruction.

Assembly Code Features and Tricks

Even local labels must be unique across an entirdile, so the IR’s label numbers (which are per-function) nted
be disambiguated. A simple way to do this is just to give eactttion in the program a unique number.

String literals can be defined usingsci z assembler directives. It is easiest just to store these deimit them all
at the end of the function.

Most processors have certain idiosyncratic instructians, the X86 is certainly no exception. The most troublesome
is i di vl ; see the X86-64 handout for details, and look at the outpihefreference generator to see one (quite
inefficient) way of coping with the associated problems.

The skeleton code generator implements a fairly simpleréihgo for converting three-address EId instructions to
two-operand machine code. You can use this as the basisriergiengsub andi nul instructions as well. But note

that the two-operand form ofrrul | requires aegister as its destination operand. There are also a number of ways in
which the skeleton’s approach could be improved.

Extra Credit

Almost every aspect of the reference generator’s output codild be improved. For extra credit, pick one or more
aspects that you would like to improve, identify and docut@estrategy for doing so, and implement the strategy in
your submission. Consulting with the instructor first mightwise.

Submitting the Program

Place yourX86CGen class in the single fil&X86Gen. j ava, and mail it tocs322- 01@s. pdx. edu. You must
mail this file as a plain texdttachment; the contents of the message itself don’t matter. If you aykimg in a team of
two, only one team member should submit a solution, whichtimaxge the names of both team members in a comment
at the top; the other team member should send mail idengjfiyim- or her-self as a team member.

