
CS 322 Homework 4 – due 1:30pm, June 7, 2012

Generating X86-64 Assembly Code for fab

Working individually or in teams of two, write an X86-64 codegenerator for thefab IR. The IR is the same as the one
used in assignment 3. In principle, your generator should work on all IR programs; however, in practice it suffices for
it to work on IR programs generated fromfab programs using the reference IR code generator from assignment 3.

Don’t worry about the runtime behavior of programs that attempt to allocate more heap space than is available at
runtime, or that pass more than six arguments to a function.

The code generator should read an.ir file specified on the command line, use the existing parsing code inir.jar
to convert it to internal form, and then generate assembly code on standard output, which is normally captured into
an.s file. This file can then be assembled and linked viagcc with a “standard library”fablib.o to make an
X86-64 executable. When executed, programs should behave as they did under the various interpreters in previous
assignments.

Runtime errors such as array bounds violation should be handled by generating code to call the appropriate built-in
runtime library function, e.g.array bounds, as detailed below.

As usual, a “correct” generator is available in the jar fileX86gen.jar; it can be run on filefoo.ir by typing

java -classpath X86gen.jar:ir.jar X86GenDriver foo.ir > foo.s

It is not necessary that the code you generate be identical towhat the referenceX86gen generates, but it must have
the same observable behavior when assembled and executed.

Linkage and Library

Each function of afab program should generate a corresponding assembly languagefunction of the same name,
but with two leading underscores added. In particular, thefab main function should generate an assembler function
MAIN. Thefablib.c file contains an ordinary Cmain function that simply invokes MAIN, and returns its

integer return value as the completion status code (always 0, for a fab program). Thus a complete executable can be
obtained by assembling your.s file, compilingfablib.c, and linking them together, e.g.:

gcc -m64 -g -o foo foo.s fablib.c

IO and heap memory allocation are performed by issuing C-style procedure calls to library functions also provided in
fablib.c. These functions are:read int (which returns an integer result value),write int (which takes an
integer argument),write string (which takes the address of a string as argument),write bool (which takes a
boolean byte value as an argument),write newline (which takes no arguments),bounds error (which takes
no arguments, issues the messageArray bounds violation to stderr, and exits), nil pointer (which
takes no arguments, issues the messageNIL pointer dereference tostderr, and exits), andalloc (which
takes an integer size argument in bytes and returns the address of the allocated storage).

MacOS configuresgcc to associate the assembly-level namefoo with the C-level namefoo. For convenience of
those developing code on MacOS, there is a separate version of fablib.c that is identical except that it drops the
leading underscores from function names (sincegcc will put them back on again).

Implementation

Source fileIR.java documents the IR representation. It is the same as before except that each IR instruction line
now has an initial line number (as it did in the original HW3 version, but not the revised version). Fileir.jar
contains classes for representing, parsing, and generating IR. It is slightly modified from the HW3 version to include
all the files needed for IR parsing (so frontend.jar should nolonger be needed at all), and the parser had been modified

1



to expect (and ignore) the instruction line numbers. Sourcefile X86.java contains support classes for emitting X86-
64 assembly code. FileLiveness.java contains support classes for calculating live ranges of IR operands. File
X86GenDriver.java contains a top-level driver.

Your code generator must be defined by a classX86Gen that compiles and links withir.jar, and theX86,
Liveness andX86GenDriver classes provided; you must not change these classes. Thus, your X86Gen class
must implement the method

static void genProgram(IR.Program p)

There is no provision for your generator to throw catchable exceptions, but it can throwError exceptions or use
asserts to report uncatchable errors. Remember to use the-ea flag to java to enable assertion checking at
runtime.

Your generator class should be placed in a separate fileX86Gen.java, which can be compiled using

javac -classpath .:ir.jar X86Gen.java

assuming thatX86.java andLiveness.java (or their class files) are already in the current directory. Askeleton
for a working generator is available inX86Gen0.java; you are encouraged to use this as the basis for your generator.
Places that need attention are marked with “...” or “!!!” in comments.

An important task of the generator is to mapIR.NamedReg andIR.TempReg operands to X86 registers or mem-
ory locations. It is simplest to build this mapping once and for all for the entire function; this approach doesn’t
always produce great code, but it is adequate for our purposes. However, the register allocator in the skeleton istoo
simplistic: once a register is used for one IR operand, it is never re-used for another one, even if the two operands
have disjoint live ranges. You should implement a linear scan or graph-coloring register allocator instead; the linear
scan approach is easiest. You can use the methods in classLiveness.java to calculate which temporaries are
live after each instruction, and to calculate the corresponding live intervals. In particular, you can use the method
calculateLiveIntervals which calculates the live interval associated with each register used in a function,
and returns aMap from IR.Regs toLiveness.Intervals. The latter objects have two integer fieldsstart
andend, representing the interval by its first and last indices in the function’scode array. The skeleton generator
uses this map to enumerate all the operands that appear in thefunction, but it doesn’t make much use of the range
information; you can do better.

The generated code must obey the X86-64 calling and registerusage conventions, which are detailed in the reference
document on the course web page. There is no need to use a framepointer; variables in the frame can be accessed
relative to the stack pointer, which seldom needs to change in the middle of a function (and always in a very controlled
way). Any callee-save registers used by a function need to bepushed onto the stack at the start of the function and
popped back off at the end. It is simplest not to use caller-save registers across calls at all; that way, there is no need
to generate code to save and restore them around calls.

You will also want to reserve at least two registers (%r10 and%r11 are most suitable) as local temporaries for use
inside the translation of a single IR instruction.

Assembly Code Features and Tricks

Even local labels must be unique across an entire.s file, so the IR’s label numbers (which are per-function) needto
be disambiguated. A simple way to do this is just to give each function in the program a unique number.

String literals can be defined using.asciz assembler directives. It is easiest just to store these up and emit them all
at the end of the function.

Most processors have certain idiosyncratic instructions,and the X86 is certainly no exception. The most troublesome
is idivl; see the X86-64 handout for details, and look at the output ofthe reference generator to see one (quite
inefficient) way of coping with the associated problems.

The skeleton code generator implements a fairly simple algorithm for converting three-address IRadd instructions to
two-operand machine code. You can use this as the basis for generatingsub andimul instructions as well. But note

2



that the two-operand form ofimull requires aregister as its destination operand. There are also a number of ways in
which the skeleton’s approach could be improved.

Extra Credit

Almost every aspect of the reference generator’s output code could be improved. For extra credit, pick one or more
aspects that you would like to improve, identify and document a strategy for doing so, and implement the strategy in
your submission. Consulting with the instructor first mightbe wise.

Submitting the Program

Place yourX86Gen class in the single fileX86Gen.java, and mail it tocs322-01@cs.pdx.edu. You must
mail this file as a plain textattachment; the contents of the message itself don’t matter. If you are working in a team of
two, only one team member should submit a solution, which must have the names of both team members in a comment
at the top; the other team member should send mail identifying him- or her-self as a team member.

3


