
CS 322 Homework 3 – due 1:30 p.m., Tuesday, May 29, 2012 [NOTE NEW DEADLINE!]

(Copyright, Andrew Tolmach 2003-2012. All rights reserved.)

Generating Intermediate Code for fab

Working individually or in teams of two, write an intermediate code generator for (a subset of) thefab language. As
before,exclude coverage of anything to do with real numbers; your generatorcan do anything it wants with programs
that use real number features. You may assume that the intermediate language’s notion of integers, their operations,
and how to read them directly matchesfab.

There is one small change in thefab language compared to the Reference Manual. The manual says that all the
expressions in awrite statement should be evaluated before any of them are printed. You should instead implement
the statement so that each expression is evaluated and then printed immediately, before the next is evaluated. In
fact, the reference interpreter from assignment 1 already implemented this (technically incorrect) behavior. The only
observable difference this new semantics can make is that more printing might occur before the program issues a
runtime error or goes into an infinite loop.

The intermediate code representation you will generate is a3-address code with broad similarities to x86 assem-
bly code, but with major simplifications, particularly in the treatment of variable addressing (addressing by name is
supported), operand types, and function call. Details of the intermediate code are given below.

The code generator should read the.fab file from standard input, using the existing front end code (which has some
changes for this assignment) to perform lexical analysis, parsing, and checking. The generator itself can assume that
the AST being compiled has successfully passed the checker.The generator should produce an internal representation
of the intermediate code using constructor methods of the providedIR class. The resulting code can be printed to
standard output, which is normally captured into an.ir file. It can also be directly executed using the provided
interpreter, as described below.

Runtime errors such as array bounds violation should be handled by generating code to call the appropriate built-in
system error call, e.g.bounds error, as detailed below.

As usual, a “correct” generator is available in the jar fileir.jar; it can be run on filefoo.fab to produce an output
file foo.ir by typing

java -classpath frontend.jar:ir.jar IRGenDriver foo.fab foo.ir

In addition, an interpreter that executes IR is available inthe same jar file; to run it on the “official” IR resulting from
file foo.fab, you can type

java -classpath frontend.jar:ir.jar IRInterpDriver foo.fab

The interpreter takes user input from standard input and writes program output to standard output in the usual way. It
is not necessary that the code you generate be identical to what myIRgen generates, but it must behave the same way
as my code does when fed toIRinterp.

Intermediate Code Representation

The intermediate code representation (IR) consists of a sequence of top-level function declarations. Each function
carries a list of formal parameters, a list of local variables, and a sequence of instructions. One of the functions (with
no parameters or free variables) must be called “$MAIN”; it serves as the entry point to the program. When$MAIN
terminates, it returns the overall status value of the program; this should be 0 for programs that terminate successfully.

We can think of the IR as operating on an abstract machine withthe following state components:

• A global list of top-level function definitionsf1, . . . , fn.

1

• Named variablesnm1, . . . , nmn refering to the parameters and locals declared for the current function.

• An unbounded number of temporaries$T0, $T1, . . . local to the current function.

• A global byte-addressed memory referenced by locationsloc.

• An unbounded number of outgoing-argument registers$A<c>0,$A<c>1,. . . holding arguments about to be
passed to a function in the call labelledc.

• A single register$RET holding a function return value just before return. From thecaller’s perspective, the
return register is tagged with its associated call number and looks like$RET<c>.

The IR manipulates typed values; its three types areBOOL, INT, andPTR (which includes locations, function names,
and strings). For the most part, the IR treats all these as having uniform size; in particular, named variables, tem-
poraries, and other registers can all contain any kind of value. However, when values are stored in memory, they
occupy different numbers of bytes depending on their types:1 byte forBOOL, 4 forINT, and 8 forPTR. In addition,
values stored in memory must be aligned to addresses divisible by their size (e.g, anINT must be stored on a 4-byte
boundary).

We can describe the IR instructions using the following grammar which matches the pretty-printed generated by the
IR classes. But note that there is no parser provided; IR is built by calling node constructors directly; the mapping
between grammar and constructors should be fairly obvious.Beware: theIR constructors do a certain amount of
sanity checking, andIRInterp incorporates many dynamic checks, but there is no systematic static checker; it is
quite possible to construct (and probably even interpret) nonsensical IR programs.

The instruction set:
mov[B|I|P] src,dst move valuesrc to dst
addI src1,src2,dst dst := src1 + src2 (integer addition)
addP src1,src2,dst dst [P] := src1 [P] + src2 [I] (pointer addition)
subI src1,src2,dst dst := src1 - src2 (integer subtraction)
mulI src1,src2,dst dst := src1 * src2 (integer multiplication)
divI src1,src2,dst dst := src1 / src2 (integer division)
modI src1,src2,dst dst := src1 % src2 (integer mod)
ld[B|I|P] addr,dst load value from memory at addressaddr into dst
st[B|I|P] src,addr store value fromsrc into memory at addressaddr
jmp Ln unconditional jump
cmp[B|I|P] src1,src2 compare valuesrc1 against valuesrc2 (in “normal” order)
je Ln jump if last compare said equal
jne Ln jump if last compare said not equal
jg Ln jump if last compare said greater than (signed)
jge Ln jump if last compare said greater than or equal (signed)
jl Ln jump if last compare said less than (signed)
jle Ln jump if last compare said less than or equal (signed)
ja Ln jump if last compare said above (unsigned)
jae Ln jump if last compare said above or equal (unsigned)
jb Ln jump if last compare said below (unsigned)
jbe Ln jump if last compare said below or equal (unsigned)
call <c,arg-count,returns-value?> *(r) call #c to function whose name is inr
calls <c,arg-count,returns-value?> s call #c to system function nameds
Ln: label declaration

Each function’s list of instructions must begin and end witha label declaration. Function execution begins at the
first instruction. Note that there is noreturn instruction; the function returns when it “falls off the end” of the last
instruction.

General-purpose registers (r) are:

• named registers (nm) representing local variables and parameters

2

• temporary registers (written$Ti for some integeri)

Sources (src) are:

• general-purpose registers (r)

• the caller’s view of the return register (written$RET<c> for some unique call numberc).

• 32-bit integer constants (i)

• the boolean constantstrue andfalse

• the nil address constant (nil)

• quoted string literals (”s”)

• function names (s)

Destinations (dst) are:

• general-purpose registers (r)

• caller’s argument registers (written$A<c>i for some unique call numberc and argument numberi)

• the callee’s fixed return register$RET.

Addresses (a) are:

• addresses contained in source registers[r]

• addresses computed as the sum of the contents of a source register plus a fixed integer offseti[r].

Local labels are written asLn for some non-negative integern. Label numbers should be unique within a function.
All names (parameters and locals) should be unique within a function. Top-level function names should be globally
unique.

Regular (non-system) calls to IR functions use the following protocol. First, the arguments to the function are copied
to the argument registers$A0, $A1, etc. Then thecall instruction is executed giving the function label as target.
Once inside the function, the formal parameters can be accessed by name, just like local variables. A function can
return a value by moving it to special register$RET before returning by falling off the end. The caller can then fetch
the returned value from$RET.

In practice, IR code generated fromfab will generateclosure records for all functions, as described below. However,
there is no special support for closures in the IR itself.

IO and heap memory allocation are performed by issuing “system” function calls with thecalls instruction, to one
of the following special functions:

• read int (which returns an integer result value)

• write int (which takes an integer argument)

• write bool (which takes a boolean argument)

• write string (which takes a string argument)

• write newline (which takes no arguments)

• bounds error (which takes no arguments, issues the message “Array bounds violation” to
stderr, and simulates an error exit)

3

• nil pointer (which takes no arguments, issues the message “Nil pointer dereference” to
stderr, and simulates an error exit)

• alloc (which takes an integer size argument in bytes and returns the address of the allocated storage)

Arguments and result for these functions are passed in the$A and$RET registers in the same way as for regular calls.

There is one further detail: eachcall andcalls within a function is tagged with a unique identifying numberc. In
the caller’s code, the outgoing argument registers and the return register associated with that call are tagged with the
call numberc, and are written$A<c>0, $RET<c>, etc. These call number tags are irrelevant for this assignment—the
IR interpreter ignores them—but they will be useful when we come to do code generation in the next assignment.
Note that there is only one set of argument registers and one return register in the IR machine state. Register names
that differ only in their call number tag all refer to the sameactual register. This means that if the actual arguments
to a function themselves contain nested function calls, these nested calls must be performed before any arguments are
stored into the$A locations for the outer call.

Implementation

As before, the filefrontend.jar contains a completefab front-end, which parses and type-checks.fab files
and produces an AST data structure. FileAst.java documents the AST.

FileIR.java documents the IR. Your code generator must be defined by a classIRGen that compiles and links with
theAst, IR, IRGenDriver, andIRInterpDriver classes provided here; you must not change these classes.
Thus, yourIRGen class must implement the method

static IR.Program gen(Ast.Program p)

Also, you will want to use theVisitor classes andaccept methods inAst to traverse declarations, statements,
expressions, etc. Your generator class should be placed in aseparate fileIRGen.java, which can be compiled using

javac -classpath .:frontend.jar IRGen.java

You can then generate IR code for a filefoo.fab into output filefoo.ir by typing

java -classpath .:frontend.jar IRGenDriver foo.fab foo.ir

To run the IR interpreter using your IRGen, you can type

java -classpath .:frontend.jar:ir.jar IRInterpDriver foo.fab

assuming that your IRGen classes are in the current directory (and will thus take precedence over the reference versions
in ir.jar).

There is a skeletal implementation in fileIRGen0.java. Feel free to build your generator by extending this skeletal
version. The top of this file contains definitions and supporting code for generating operands and emitting code.

It is not necessary to use a symbol table or environment when generating intermediate code. This causes problems only
when generating code for the constantstrue, false, andnil; since there is no symbol table, there is no uniform
way to handle the fact that they are constants rather than variables.IRGen0.java shows one approach to solving
this problem.

Use control flow form for booleans by default. You’ll need to write code to convert from control flow form to value
form when storing a boolean; the converse code, to generate control flow from a value, is already inIRGen0.java.

Arrays and records should be represented by pointers to contiguous heap-allocated memory with the same general
layout as in Assignment 1. Record layout will need to be refined to deal with the potentially different sizes and
alignments of the various fields.

4

All fab functions should be represented usingclosures. Each function declaration should lead to generated IR code
that allocates and initializes a closure record for the function. The closure record is an (ordinary) IR record whose first
field contains the function’s name, and whose subsequent fields contain the values of function’s free identifiers. (Recall
that these must beconsts, so their values can be copied into the closure record at thepoint of function declaration
without worrying about how they might subsequently change.) Within the environment where a function is declared,
the function is represented by a pointer to its closure record.

A fab function call should generate IR code to (i) load the function’s name from the first closure field; and (ii)call
to that name, passing the closure record itself as a (new) initial argument. Compiling the body of afab function should
produce an IR function with an extra initial argument with a fresh name (e.g.$CLOSURE) that does not conflict with
any of the existing argument names. Within the body of the function, references tofab free identifiers should compile
to IR code that fetches the corresponding value field from$CLOSURE.

Submitting the Program

Place yourIRGen class in the single fileIRGen.java, and mail it tocs322-01@cs.pdx.edu, with HW3 in the
subject line. You must mail this file as a plain textattachment; the contents of the message itself don’t matter. We
should then be able to compile your code by creating a fresh directory, saving your attachment, copying in the provided
frontend.jar and typing

javac -classpath .:frontend.jar IRGen.java

If we also copy in the provided fileIRGenDriver.class, we should then be able to execute your generator on file
foo.fab by typing

java -classpath .:frontend.jar IRGenDriver foo.fab foo.ir

Note that we will be using automated mechanisms to read, compile, and test your programs, so adherence to this
naming and mailing policy is important! You may lose points if you fail to submit your program in the correct way.

If you are working in a team of two, only one team member shouldsubmit a solution, which must have the names of
both team members in a comment at the top; the other team member should send mail identifying him- or her-self as
a team member. Please submit this information even if your team is unchanged from assignment 1.

5

