CS 322 Homework 3 — due 1:30 p.m., Tuesday, May 29, 2012 [NOTEE\V DEADLINE!]

(Copyright, Andrew Tolmach 2003-2012. All rights reseryed

Generating Intermediate Code for fab

Working individually or in teams of two, write an intermetiacode generator for (a subset of) fab language. As
before,exclude coverage of anything to do with real numbers; your gene@ordo anything it wants with programs
that use real number features. You may assume that the iedigaite language’s notion of integers, their operations,
and how to read them directly matcHab.

There is one small change in tli@b language compared to the Reference Manual. The manual lsalyalk the
expressions in ar i t e statement should be evaluated before any of them are privibedshould instead implement
the statement so that each expression is evaluated and timedpmmediately, before the next is evaluated. In
fact, the reference interpreter from assignment 1 alreaqiyamented this (technically incorrect) behavior. Theyonl
observable difference this new semantics can make is the¢ printing might occur before the program issues a
runtime error or goes into an infinite loop.

The intermediate code representation you will generate3dsaddress code with broad similarities to x86 assem-
bly code, but with major simplifications, particularly inethreatment of variable addressing (addressing by name is
supported), operand types, and function call. Details @frttermediate code are given below.

The code generator should read tHeab file from standard input, using the existing front end codki¢lv has some
changes for this assignment) to perform lexical analysissipg, and checking. The generator itself can assume that
the AST being compiled has successfully passed the chetdkeigenerator should produce an internal representation
of the intermediate code using constructor methods of tbeiged! R class. The resulting code can be printed to
standard output, which is normally captured into.drr file. It can also be directly executed using the provided
interpreter, as described below.

Runtime errors such as array bounds violation should beledry generating code to call the appropriate built-in
system error call, e.dbounds_er r or, as detailed below.

As usual, a “correct” generator is available in the jarifite j ar ; it can be run on filé 0o. f ab to produce an output
file f 0o. i r by typing

java -classpath frontend.jar:ir.jar I RGenDriver foo.fab foo.ir

In addition, an interpreter that executes IR is availabliésame jar file; to run it on the “official” IR resulting from
file f oo. f ab, you can type

java -classpath frontend.jar:ir.jar IRInterpDriver foo.fab

The interpreter takes user input from standard input antég/grogram output to standard output in the usual way. It
is not necessary that the code you generate be identicaldbmyil Rgen generates, but it must behave the same way
as my code does when fedlt&i nt er p.

Intermediate Code Representation

The intermediate code representation (IR) consists of aesex of top-level function declarations. Each function
carries a list of formal parameters, a list of local variabknd a sequence of instructions. One of the functions (with
no parameters or free variables) must be calle®Al N’; it serves as the entry point to the program. WiSAI N
terminates, it returns the overall status value of the mogithis should be 0 for programs that terminate succegsfull

We can think of the IR as operating on an abstract machinethétffiollowing state components:

e A global list of top-level function definitiong, . .., f,.

Named variableam,, ..., nm,, refering to the parameters and locals declared for the ufuaction.

An unbounded number of temporari&®o, $T1, . .. local to the current function.

A global byte-addressed memory referenced by locations

An unbounded number of outgoing-argument regis$#sc>0,$A<c>1,. .. holding arguments about to be
passed to a function in the call labelled

A single registel$RET holding a function return value just before return. From t¢a#ler’s perspective, the
return register is tagged with its associated call numbeéiaoks like$RET<c>.

The IR manipulates typed values; its three typesB@@L, | NT, andPTR (which includes locations, function names,
and strings). For the most part, the IR treats all these am@gamniform size; in particular, named variables, tem-
poraries, and other registers can all contain any kind afezaHowever, when values are stored in memory, they
occupy different numbers of bytes depending on their tyfidsyte forBOOL, 4 for | NT, and 8 forPTR. In addition,
values stored in memory must be aligned to addresses deisjbtheir size (e.g, ahNT must be stored on a 4-byte
boundary).

We can describe the IR instructions using the following gremwhich matches the pretty-printed generated by the
IR classes. But note that there is no parser provided; IRiis topicalling node constructors directly; the mapping
between grammar and constructors should be fairly obvi@esvare: the R constructors do a certain amount of
sanity checking, antiRI nt er p incorporates many dynamic checks, but there is no systerstatic checker; it is
quite possible to construct (and probably even interpm@tsensical IR programs.

The instruction set:

nmov[B| I | P] src, dst move valuesrc to dst

addl srcy, srco, dst dst := src; + srep (integer addition)

addP srcy, srcy, dst dst [P] :=src; [P] + sree [I] (pointer addition)

subl srcy, srcy, dst dst := srcy - src, (integer subtraction)

mul | srcy, srcy, dst dst ;= srcy * sre, (integer multiplication)

di vl srcy, srco, dst dst := srcy / srep (integer division)

nodl srcg, srcy, dst dst := src; % sre, (integer mod)

[d[B| 1| P] addr, dst load value from memory at addreaddr into dst
st[B|I|P] src, addr store value fronsrc into memory at addresgidr

jmp Ln unconditional jump

cmp[B| || P] srcy, srcy compare valuerc, against valuerc, (in “normal” order)
je Ln jump if last compare said equal

jne Ln jump if last compare said not equal

jg Ln jump if last compare said greater than (signed)

jge Ln jump if last compare said greater than or equal (signed)
il Ln jump if last compare said less than (signed)

jle Ln jump if last compare said less than or equal (signed)
ja Ln jump if last compare said above (unsigned)

jae Ln jump if last compare said above or equal (unsigned)
jb Ln jump if last compare said below (unsigned)

j be Ln jump if last compare said below or equal (unsigned)
cal | <c, arg-count, returns-value?> *(r) call # to function whose name is in

cal | s <c, arg-count, returns-value?> s call # to system function named

Ln: label declaration

Each function’s list of instructions must begin and end véthabel declaration. Function execution begins at the
first instruction. Note that there is naet ur n instruction; the function returns when it “falls off the €raf the last
instruction.

General-purpose registers @re:

e named registersyn) representing local variables and parameters

e temporary registers (writtediT: for some integet)
Sourcesgrc) are:

e general-purpose registerns (

e the caller’s view of the return register (writt§RET<c> for some unique call numbey.

32-bit integer constants)(

the boolean constants ue andf al se

the nil address constanti(l)

quoted string literals ¢)

function namessy)
Destinationsdst) are:

e general-purpose registers (
e caller’'s argument registers (writtéA<c>i for some unique call numberand argument numbey

e the callee’s fixed return regist8RET.
Addressesq) are:

e addresses contained in source regigteis

e addresses computed as the sum of the contents of a sourstergdiis a fixed integer offsétr] .

Local labels are written alsn for some non-negative integer Label numbers should be unique within a function.
All names (parameters and locals) should be unique withimatfon. Top-level function names should be globally
unique.

Regular (non-system) calls to IR functions use the follappnotocol. First, the arguments to the function are copied
to the argument registefA0, $A1, etc. Then theal | instruction is executed giving the function label as target

Once inside the function, the formal parameters can be seddsy name, just like local variables. A function can

return a value by moving it to special regis$RET before returning by falling off the end. The caller can thetch

the returned value frol@RET.

In practice, IR code generated frdmab will generateclosure records for all functions, as described below. However,
there is no special support for closures in the IR itself.

IO and heap memory allocation are performed by issuing ésgsfunction calls with theal | s instruction, to one
of the following special functions:

read.i nt (which returns an integer result value)

writ e_i nt (which takes an integer argument)

wri t e_bool (which takes a boolean argument)

writ e_string (which takes a string argument)

wri t e_.newl i ne (which takes no arguments)

bounds_error (which takes no arguments, issues the messalya dy bounds vi ol ati on” to
st der r, and simulates an error exit)

e ni |l _poi nter (which takes no arguments, issues the messadd “poi nt er dereference” to
st der r, and simulates an error exit)

e al | oc (which takes an integer size argument in bytes and retumadHtress of the allocated storage)

Arguments and result for these functions are passed iiAENd$RET registers in the same way as for regular calls.

There is one further detail: eaclal | andcal | s within a function is tagged with a unique identifying numbetn

the caller’s code, the outgoing argument registers andetugn register associated with that call are tagged with the
call numbere, and are writtei$A<c>0, $RET<c>, etc. These call number tags are irrelevant for this asstgthe

IR interpreter ignores them—but they will be useful when veene to do code generation in the next assignment.
Note that there is only one set of argument registers andetnenrregister in the IR machine state. Register names
that differ only in their call number tag all refer to the saawtual register. This means that if the actual arguments
to a function themselves contain nested function callsamested calls must be performed before any arguments are
stored into thébA locations for the outer call.

Implementation

As before, the filé r ont end. j ar contains a completkab front-end, which parses and type-checksab files
and produces an AST data structure. it . j ava documents the AST.

Filel R j ava documents the IR. Your code generator must be defined by sldR&n that compiles and links with
theAst, | R, 1 RGenDri ver, andl Rl nt er pDri ver classes provided here; you must not change these classes.
Thus, your RGen class must implement the method

static | R Program gen(Ast. Program p)

Also, you will want to use th#&/i si t or classes andccept methods inAst to traverse declarations, statements,
expressions, etc. Your generator class should be placeskipaaate filé RGen. j ava, which can be compiled using

javac -classpath .:frontend.jar |RGen.java

You can then generate IR code for a fileo. f ab into output filef 0o. i r by typing
java -classpath .:frontend.jar | RGenDriver foo.fab foo.ir
To run the IR interpreter using your IRGen, you can type
java -classpath .:frontend.jar:ir.jar IRInterpDriver foo.fab

assuming that your IRGen classes are in the current dige@ad will thus take precedence over the reference versions
inir.jar).

There is a skeletal implementation in fil&GenO0. j ava. Feel free to build your generator by extending this skéleta
version. The top of this file contains definitions and sugpgrtode for generating operands and emitting code.

Itis not necessary to use a symbol table or environment when gemgnatérmediate code. This causes problems only
when generating code for the constantsie, f al se, andni | ; since there is no symbol table, there is no uniform
way to handle the fact that they are constants rather thaablas. | RGen0. j ava shows one approach to solving
this problem.

Use control flow form for booleans by default. You'll need tates code to convert from control flow form to value
form when storing a boolean; the converse code, to geneavateot flow from a value, is already InRGenO. j ava.

Arrays and records should be represented by pointers tagomnis heap-allocated memory with the same general
layout as in Assignment 1. Record layout will need to be reffiteedeal with the potentially different sizes and
alignments of the various fields.

All fab functions should be represented usehgsures. Each function declaration should lead to generated IR code
that allocates and initializes a closure record for the fionc The closure record is an (ordinary) IR record whose firs
field contains the function’s name, and whose subsequedd fielntain the values of function’s free identifiers. (Recal
that these must beonst s, so their values can be copied into the closure record gidime of function declaration
without worrying about how they might subsequently chaniéthin the environment where a function is declared,
the function is represented by a pointer to its closure kcor

A fab function call should generate IR code to (i) load the funtmame from the first closure field; and (@al |

to that name, passing the closure record itself as a (netigliargument. Compiling the body offab function should
produce an IR function with an extra initial argument wittrash name (e.gsCLOSURE) that does not conflict with
any of the existing argument names. Within the body of thetion, references ttab free identifiers should compile
to IR code that fetches the corresponding value field f€hOSURE.

Submitting the Program

Place youl RGen class in the single file RGen. j ava, and mail it tocs322- 01@s. pdx. edu, with H/B in the
subject line. You must mail this file as a plain tettachment; the contents of the message itself don’t matter. We
should then be able to compile your code by creating a frasietdiry, saving your attachment, copying in the provided
front end. j ar and typing

javac -classpath .:frontend.jar |RGen.java

If we also copy in the provided fileRGenDr i ver . cl ass, we should then be able to execute your generator on file
f 0o. f ab by typing

java -classpath .:frontend.jar | RGenDriver foo.fab foo.ir

Note that we will be using automated mechanisms to read, deygnd test your programs, so adherence to this
naming and mailing policy is important! You may lose poiritgdu fail to submit your program in the correct way.

If you are working in a team of two, only one team member sheuloimit a solution, which must have the names of
both team members in a comment at the top; the other team meimiaeld send mail identifying him- or her-self as
a team member. Please submit this information even if yamtis unchanged from assignment 1.

