Compiling Object-Oriented
LLanguages

Andrew P. Black

How are OO Languages Difterent?

e methods instead of procedures
e method request instead of procedure call
o “full upward funargs"

e inheritance & encapsulation
= frequent method requests

How are OO Languages Difterent?

* subtyping
e types dictate interface, not implementation
* not in all languages

e code to be executed not known at time of
request

Method Request

* Method request, aka message send, is not the
same as procedure call

Procedure Call

e Code to be executed is identified by name at call site

@ o

\ g

e Compiler’s job:

¢

MatAdd&atriX, alNumber) SetAdd(aSet, alNumber)

MatAdd(m, n) SetAdd(s, n)

i := findEmptySlot(s);

oreach iinmdo ... , ;
7 insert At (s, i, n);

Method Request

e Code to be executed depends on the receiver
of the request

add(n)

aMatrix

add

=d foreach i in self do

subtact, 0\

anObject.add(aNumber)

|

aSet.,

add(n)

1 := self.findEmptySlot;
.insert At (z, n);

add

remove

Implementing Objects

e Fach object contains, conceptually:
* a set of named methods

¢ 3 set of named instance variables

myPoznt.

Implementing Objects

e Each object contains, /z practice :

e 3 reference to a shared set of named
methods

¢ 3 set of named instance variables

myPoint.

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: "
poolDictionaries: "
category: ‘Graphics-Primitives’

x: xInteger y: yinteger

"Answer an instance of me with coordinates xinteger and yinteger”

~self basicNew setX: xInteger setY: yinteger

setX: xValue setY: yValue
x = xValue.

y = yValue

21 <70> self

22 <D1> send: basicNew
23 <10> pushTemp: 0
24 <11> pushTemp:1

25 <F0> send: setX:setY:
26 <7C>returnTop

13 <10> pushTemp: 0
14 <60> popIintoRcvr: 0
15 <11> pushTemp: 1
16 <61> popintoRcvr: 1
17 <78=>returnSelf

™ ™
_) (' !
]
) h (" " mnr N " Y ('/\

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: "
poolDictionaries: "
category: 'Graphics-Primitives’ 25 <10> pushTemp: 0
26 <D0> send: isPoint
27 <AC OA> jumpFalse: 39
29 <00> pushRcvr: 0
30 <10> pushTemp: 0
| 31 <CE=> send: x
+ arg 32 <B0>send: +
“Answer a Point that is the sum of the receiver and arg" | 33 <01> pushRcvr: 1
34 <10> pushTemp: 0
arg isPoint if True: [~ (x + arg x) @ (y + arg y)l. 35 <CF>send:y

~ arg adaptToPoint: self andSend: #+ 36 <B0> send: +
37 <BB>send: @

38 <7C>returnTop

39 <10> pushTemp: 0

40 <70> self

41 <22> pushConstant: #+

~X 42 <Fl1> send: adaptToPointandSend:
43 <7C>returnTop

X
"Answer the x coordinate”

What does “send x” mean?

1. Find the representation of
the receiver

2. Find its list of methods

3. Look for a method named

arg isPoint
ifTrue: [(x+ argx) @ (y + argy)1.
¢__% " arg adapt1oPoint: self andSend: #+

X

setX: xValue setX: yValue

4. If there is none, repeat i

y :=yValue

above in the methods of
the receiver’s superclass ...

public class CartesianPoint implements Point{
private double x;

POintS in Java private double y;

// constructor
CartesianPoint(double| xCoord, double yCoord) {
x = xCoord;

interface Point{ y = yCoord;
Point plus(Point p); }
boolean greaterThan(Point p);
double x(); public double x() { return x ;}
double y(); public double y() { return y ;}
} public Point plus(Point p) {
return new CartesianPoint(x+p.x(), y+p.y()); }

public boolean greaterThan(Point p) {
return (x>p.x()) & (y>p.y(); }

public class PolarPoint implements Point{l }
private double r; —
private double theta;

// constructor

PolarPoint(double xCoord, double yCoord) {
r = java.lang.Math.sqrt((xCoord*xCoord) + (yCoord*yCoord));
theta = java.lang.Math.atan2(yCoord, xCoord);

}

public double x() { return r * java.lang.Math.cos(theta) ;}
public double y() { return r * java.lang.Math.sin(theta) ;}
public Point plus(Point p) {

return new PolarPoint(this.xQ+p.x(), this.yQ+p.y(); }
public boolean greaterThan(Point p) {

return (this.xQO>p.x()) & (this.yOQ>p.y()); }

Points 1n Java

$ javap -c CartesianPoint

public class CartesianPoint implements Point{
private double x;
private double y;

// constructor

CartesianPoint(double| xCoord, double yCoord) {
x = xCoord;
y = yCoord;

}

public double x() { return x ;}
public double y() { return y ;}
public Point plus(Point p) {
return new CartesianPoint(x+p.x(), y+p.y()); }
public boolean greaterThan(Point p) {

return (>p.x()) & (y>p.y()); }

Compiled from "CartesianPoint. java"

public class CartesianPoint extends java.lang.Object implements Point{

CartesianPoint(double, double);
Code:
: aload_0

putfield #2; //Field x:D

#3;, //Field y:D

14: return

public class CartesianPoint implements Point{
private double x;

POintS in Java private double y;

// constructor

CartesianPoint(double| xCoord, double yCoord) {
x = xCoord;
y = yCoord;

}

public double x() { return x ;}

. . . public double y() { return y ;}
$]avap —C Cal‘tGSIanPOIIlt public Point plus(Point p) {
return new CartesianPoint(x+p.x(), y+p.y()); }
public boolean greaterThan(Point p) {

return (>p.x()) & (y>p.y()); }

public double x();
Code:
@: aload_0

public double y();
Code:
@: aload_0

SRR L2231

public class CartesianPoint implements Point{
private double x;

J[;l(:)i;[][t:f; i;lj[‘;]]Elf‘Z:a[private double y:

// constructor

CartesianPoint(double| xCoord, double yCoord) {
x = xCoord;
y = yCoord;

}

public double x() { return x ;}

. . . public double y() { return y ;}
$]avap —C Cal‘tGSIanPOIIlt public Point plus(Point p) {
return new CartesianPoint(x+p.x(), y+p.y()); }
public boolean greaterThan(Point p) {

return (>p.x()) & (y>p.y()); }

public Point plus(Point); }
Code: r
@: new#4; //class CartesianPoint
3: dup
4: aload @
5: getfield #2; //Field x:D
8: aload. 1
9: 1invokeinterface #5, 1; //InterfaceMethod Point.x:()D
14: dadd
15: aload_@
16: getfield #3; //Field y:D
19: aload_1
20: invokeinterface #6, 1; //InterfaceMethod Point.y:(OD
25: dadd
26: invokespecial #7; //Method "<init>":(DD)V
29: areturn

X = XLoora,;
y = yCoord;
}

public double x() { return x ;}
public double y() { returny ;}
public Point plus(Point p) {

. . . return new CartesianPoint(x+p.x(), y+p.y()); }
$]avap —C CartCSIanP()lnt public boolean greaterThan(Point p) {
return (x>p.xQ)) & (y>p.y(Q); }

public boolean greaterThan(Point);
Code:

@: aload 0

11: ifle 18

14: iconst_ 1

15: goto 19
18: iconst_0

................

private double theta;

// constructor

PolarPoint(double xCoord, double yCoord) {
r = java.lang.Math.sqrt((xCoord*xCoord) + (yCoord*yCoord));
theta = java.lang.Math.atan2(yCoord, xCoord);

}

public double x() { return r * java.lang.Math.cos(theta) ;}
public double y() { return r * java.lang.Math.sin(theta) ;}
public Point plus(Point p) {

return new PolarPoint(this.xQ+p.x(), this.yQ+p.y()); }
public boolean greaterThan(Point p) {

return (this.xO>p.x()) & (this.yO>p.y()); }

}
public Point plus(Point);
Code:
@: new#8; //class PolarPoint
3: dup
4: aload_ 0
5: 1invokevirtual #9; //Method x:()D
8: aload_1
9: 1invokeinterface #10, 1; //InterfaceMethod Point.x:()D
14: dadd
15: aload_0
16: invokevirtual #11; //Method y:()D
19: aload.1
20: invokeinterface #12, 1; //InterfaceMethod Point.y:()D
25: dadd

Why is method request slow?

1. String compare
2. Linear Search

3. Chaining through super dictionaries

Why does it matter?

It doesn’t matter

* So long as there is a virtual machine
interpreting the byte-code instructions, the
overhead of method request is not much of a
problem

How to speed-up OO?

e Compile them!

* Translate each byte code into the equivalent
series of machine instructions

 the very same instructions that the
interpreter would have executed

o method Request. is now a subroutine
... and it’s time-consuming

Recall why:

String Compare

e String comparison is slow (linear in the length
of the shorter string)

e Avoid by using the Flyweight Pattern
e see Smalltalk class Symbol

[.inear Search

e [.inear Search is slow

e Linear in the number of methods
e Avoid by hashing
e hash can be generated at compile time
e hash function should be part of the language!

e Hashing is constant time, provided

® Space is not free

Why i1s this slow?

e Chaining through super dictionaries

e Avoid by copying down super methods at compile
time
e ¢.g, Point inherits Object»printString, so copy the

pair < #printString, code ptr) into Point’s method
dictionary:

e '[wo problems:
1. super-sends

2. space consumption

Simple Cache

e Small cache indexed by pair

{ receiver class, method name)

e Speeds—up overall system by 20% to 30%
[Krasner 19831, 37% {Holzle 1981}

e But: there are lots of classes in the system!

Per request-site Cache

e Idea: use a separate cache for each method

request site.
[Deutsch POPL 1983}: Efficient Implementation of Smalltalk

o Locality says that most of the receivers at a
given site will be of the same class

® ¢.g., list.collect { each — each.display }

e if list is homogeneous, all of the convert
requests will be to the same method

e Also: method name is now a constant

How to find the Cache?

* if you use one cache for each method request
in the program, there will be a /ot. of caches

e make caches small, e.g., one entry!
e How do we find the right cache?

e Simple and effective solution: place the
cache “in-line”: in the code in place of the
original request!

(3@4) display

receiver = 3@4
inline cache { call lookup routine -

calling method

system lookup
routine

BEFORE

recelver = 3@4

system lookup
routine

call “display”

calling method

-

check receiver type

code to display a point

display method for points

Figure 1. Inline Caching

AFTER

method prologue

method body

Figure from Holzle, U., Chambers, C., and Ungar, D. 1991. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In Proceedings

ECOOP ’or.

Inline Caching

e Exploits locality of call site
® site is originally “unlinked”:
* jumps to the general lookup routine

o After first request, site is over-written with call
to the “prologue” of the found method

e prologue checks that the class of the receiver
is that expected by the method

® if it’s not, jump to general lookup routine

Inline Caching is Effective

* 95% eftective for Smalltalk
e Overall speedup of ;0% on SOAR

e Can be combined with simple (receiver class,
method name) cache to handle misses.

What about Polymorphic Sends?
e Example: array := #(1'a'2'b'3'c' 4'd' 5 'e')
array do: [:each | each printOn: Transcript]

e \Xorst case for inline-cache:

* Why?

Polymorphic Sends

* Degree of Polymorphism is usually small
® less than 10
e If it’s not small, then it’s large

e Trimodal distribution:
monomorphic, polymorphic, megamorphic.

Polymorphic Inline Caches

e Suppose that we are displaying the elements of a

list

* So far, every element has been a Rectangle

receiver = list element
call “display” method —

P

calling code

rectangle display method

check receiver type

code to display
a rectangle

method prologue

method body

e Now suppose that the next element is a circle

e Inline cache calls prologue of display method
for Rectangles.

* Prologue detects the cache miss, and calls
system lookup routine

e lookup routine finds the correct method

® constructs a stub, and replaces original inline
cache with call to this stub (stub is the PIC)

e PIC stub checks if receiver is a Rectangle or a
Circle, and jumps to the start of the appropriate
method.

e No need to jump to the prologue

receiver = list element
call PIC stub

calling code

if type = rectangle
jump to method 7
if type = circle

PIC stub

Figure 3. Polymorphic inline cache

check receivert type

code to display
a rectangle

rectangle display method

check receivei type

jump to method ~\
call lookup

code to display
a circle

circle display method

e Suppose the next object is a Triangle

e PIC stub routine misses, but is extended
with a third case:

e PIC now handles Rectangles, Circles and
Triangles.

e Eventually, the PIC will handle all cases seen in
practice.

o If the size of the PIC grows too large:

e Mark request site as megamorphic and quit
caching.

Variations

e Inline small methods into PIC stub
e Order classes in PIC by frequency

* Replace linear search by hashing, binary search,
etc.

e Sharing PICS between request sites that have
same method name

® saves space, looses locality

PICs first Implemented for Self

12% -
Parser S 109 0 PrimitiveMaker
PrimMaker = ’ © Parser
2 8% -
Ul z "
L 6% -
PathCache § ’ o R © PathCache
ST AN Richards
Richards .Qg)
= 2% A
PolyTest ' | | | | o Ul
% 20% 40% 60% 80% 100% 0% ' ' ' '
0% 0 0 0 o 0 0% 20% 40% 60% 80%
Execution time (normalized to base system) Polymorphic sends
Figure 5. Impact of PICs on performance Figure 6. Inline cache miss ratios

Execution times relative to Self system with inline cache

PolyTest. An artificial benchmark (20 lines) designed to show the highest possible speedup
with PICs. PolyTest consists of a loop containing a polymorphic send of degree 5; the send is
executed a million times. Normal inline caches have a 100% miss rate in this benchmark (no two
consecutive sends have the same receiver type).

Why Inline Caches Win

* They replace indirect calls by direct calls

e Modern hardware optimizes direct calls, e.g,

with pipelining and lookahead
e The direct call is “right” 95% of the time

Another Approach

e Use indirect calls

e Compile the method name to a small integer
that is used as a table index

e Every class has it’s
e x method at offset o, its
e y method at offset 1, its

e printOn method at oftset 2, etc.

V'Table for Virtual methods

Point object. Point vtable
vptr getX | > code
1t 5 > [code.
i 3 translate ode
ColorPoint object.
ColorPointl vtible.
vptr getX It // /
X 7 //
v 3 translate /
color |red A i

v Iables

e use multiple indirection instead of search
e hard to do with multiple inheritance

® a great source of research papers

* loose on modern architectures

* no branch prediction through indirect call

AbCon Vectors

DiskFile | o _ InCoreFile
f: InputFile
/ _ /
/
/ /
/
<InputFile, DiskFile>
Vector
0 address(DiskFile.Read)
| address(DiskFile.Seek)
(a)
DiskFile InCoreFile
f: InpuiFile
/ /
/
/ /
_ /
<InputFile, DiskFile > <InputFile, InCoreFile>
Legend
Vector Vector
O Object : —)| :
0 address(DiskFile.Read) 0 address(InCoreFile. Read)
Operation vector 1 address(DiskFile.Seek) 1 address(InCoreFile.Seek)
5 Variable

F4 "9

