
CS321 Languages and Compiler Design I
Fall 2010
Lecture 4

1

LEXICAL ANALYSIS

Convert source file characters into token stream .

Remove content-free characters (comments, whitespace, ...)

Detect lexical errors (badly-formed literals, illegal characters, ...)

Output of lexical analysis is input to syntax analysis.

Could just do lexical analysis as part of syntax analysis.

But choose to handle separately for better modularity and portability, and
to allow make syntax analysis easier.

Idea: Look for patterns in input character sequence, convert to tokens
with attributes , and pass them to parser in stream .

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 2

LEXICAL ANALYSIS EXAMPLE

Pattern Token Attribute

if IF

else ELSE

print PRINT

then THEN

:= ASSIGN

= or < or > RELOP enum

letter followed by letters or digits ID symbol

digits NUM int

chars between double quotes STRING string

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 3

Source code:

if x>17 then count:= 2

else (* oops !*) print "bad!"

Lexeme Token Attribute
if IF

x ID "x"

> RELOP GT

17 NUM 17

then THEN

count ID "count"

:= ASSIGN

2 NUM 2

else ELSE

print PRINT

"bad!" STRING "bad!"

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 4

MORE DETAILS

A token describes a class of character strings with some distinguished
meaning in language.

• May describe unique string (e.g., IF, ASSIGN)

• or set of possible strings, in which case an attribute is needed to
indicate which.

(Tokens are typically represented as elements of an enumeration .)

A lexeme is the string in the input that actually matched the pattern for
some token.

Attributes represent lexemes converted to a more useful form, e.g.,:

• strings
• symbols (like strings, but perhaps handled separately)
• numbers (integers, reals, ...)
• enumerations

Whitespace (spaces, tabs, new lines, ...) and comments usually just
disappear (unless they affect program meaning).

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 5

STREAM INTERFACE

Could convert entire input file to list of tokens/attributes.

But parser needs only one token at a time, so use stream instead:

Token getToken();

File
Reader

Lexical
Analyzer

Parser

Char

Take it back!

Give next char! Give next token!

(Token,
Attributes) (or

test driver)

Another stream relationship
with ability to send

Simple call interface

read();
unread();

back a char.
 Attribute a; }
TokenCode c;

 class Token {

Parser is CLIENT of lexical analyzer

What about ERRORS?

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 6

HAND-CODED SCANNER (IN PSEUDO-JAVA)

Token getToken() {

while (true) {

char c = read();

if (c is whitespace)

ignore it;

else if (c is digit) {

int n = 0;

do {n = n * 10 + (c- ’0’);

c = read(); }

until (c not a digit);

unread(c);

return new Token(NUM,n);

} else if (c is alpha) {

String s = "";

do { s = s + c;

c = read();

} until (c is not an alphanumeric);

unread(c);

return new Token(ID,S);

} else ... } }

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 7

PROS AND CONS OF HAND-CODED SCANNERS

Efficient!

But easy to get wrong!

Note intermixed code for input, output, patterns, conversion.

Hard to specify! (esp. patterns).

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 8

FORMALIZING PATTERN DESCRIPTIONS

Ex.: “An identifier is a letter followed by any number of letters or digits.”

• Exactly what is a letter?

LETTER → a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

• Exactly what is a digit?

DIGIT → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• How can we express “letters or digits” ?

LORD → LETTER | DIGIT

• How can we express “any number of” ?

LORDS → LORD∗

• How can we express “followed by” ?

IDENTIFIER → LETTER LORDS

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 9

REGULAR EXPRESSIONS

A regular expression (R.E.) is a concise formal characterization of a
regular language (or regular set).

Example: The regular language containing all IDENTs is described by the
regular expression

letter (letter | digit)∗

where “|” means “or” and “e∗” means “zero or more copies of e.”

Regular languages are one particular kind of formal languages.

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 10

LANGUAGES : SOME PRELIMINARY DEFINITIONS

• An alphabet is a set of symbols (e.g., the ASCII character set).

• A language over an alphabet is a set of strings of symbols from that
alphabet.

• We write ǫ for the empty string (containing zero characters); some
authors use λ instead.

• If x and y are strings, then the concatenation xy is the string
consisting of the the characters of x followed by the characters of y.

• If L and M are languages, then their concatenation
LM = {xy | x ∈ L, y ∈ M}.

• The exponentiation of a language L is defined thus: L0 = {ǫ }, the
language containing just the empty string, and Li = Li−1L for i > 0.

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 11

REGULAR EXPRESSIONS AND LANGUAGES

Each R.E. over an alphabet Σ denotes a regular language over Σ,
according to the following inductive definition :

Base rules:

• The R.E. ǫ denotes {ǫ }.

• For each a ∈ Σ, the R.E. a denotes {a}, the language containing the
single string containing just a.

Inductive rules: If the R.E. R denotes LR and the R.E. S denotes LS , then

• R | S denotes LR ∪ LS .

• R · S (or just RS) denotes LRLS .

• R∗ denotes L∗
R

=
∞⋃

i=0

Li, the “Kleene closure” (the concatenation of

zero or more strings from LR).

Also: (R) denotes LR.

Precedence rules: () before ∗ before · before |.

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 12

REGULAR EXPRESSIONS

Examples (over alphabet {a, b})

a∗ zero or more a’s

(a | b)∗ all strings of a’s and b’s of length ≥ 0

(a∗b∗)∗ ditto

(aa | ab | ba | bb)∗ all strings of a’s and b’s of even length

Counterexamples (Not every language is regular!)

• {anbn | n ≥ 0}

• Set of strings over {(,)} such that parentheses are properly matched.

Implication: regular languages can’t be used to describe arithmetic
expressions.

R.E.’s are everywhere in command-line programming tools

grep, Perl, shell commands, etc.

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 13

REGULAR DEFINITIONS

Give names to R.E.’s and then use these as a shorthand.

• Must avoid recursive definitions!

• Example of “syntactic sugar ”

Examples:

id → letter (letter | digit)∗

num → digit (digit)∗ or this shorthand: digit+

if → if (not too useful!)

then → then

relop → < | > | <= | >= | = or: <(ǫ | =) | >(ǫ | =) | =

assgn → :=

string → "(nonquote)∗"

letter → a | b | . . . | z | A | . . . | Z or this shorthand: [a-zA-Z]

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or this shorthand: [0-9]

nonquote → letter | digit | ! | $ | % | . . .

Note that id and keywords have overlapping patterns.

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 14

SPECIFYING LEXICAL ANALYZERS

Can define lexical analyzer via list of pairs:

(regular expression , action)

where regular expression describes token pattern (maybe using
auxiliary regular definitions),

and action is a piece of code, parameterized by the matching lexeme,
that returns a (token,attribute) pair.

Example

(digit+, {return new Token(NUM,parseInt(lexeme));})

(alpha(alpha|digit)∗, {return new Token(ID,lexeme);})

(space|tab|newline, {})

(.,.)

(.,.)

(.,.)

So R.E’.s can help us specify scanners.

But can they help us generate running code that does pattern matching?

PSU CS321 F’10 LECTURE 4 c© 1992–2010 ANDREW TOLMACH 15

