
CS321 Languages and Compiler Design I
Fall 2010

Lecture 11

1

CUP PARSER GENERATOR

CUP = Constructor for Useful Parsers

(Java variant of yacc parser generator for C.)

Parse trees,

CUP

LALR(1)
parser

parse()

Grammar
and actions

specification

Tokens ASTs,
Intermediate code,

etc.

Grammar: BNF rules

Actions: Java program fragments executed when reduction involving
production is made.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 2

CUP FILE COMPONENTS

• Package specification (optional)

• Import list (optional)

• User Java code fragments (optional)

• Terminal and non-terminal declarations

• Precedence information (optional)

• Start symbol declaration (optional)

• Production rules (BNF) and associated actions (Java code)

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 3

CUP EXAMPLE

import java_cup.runtime.*;

terminal String ID;

terminal PLUS,TIMES,LPAREN,RPAREN;

non terminal e,t,f;

START WITH e; (declares start symbol)

e ::= e PLUS t

{: System.out.println("reduce e:e+t"); :}

| t

{: System.out.println("reduce e:t"); :}

;

t ::= t TIMES f

{: System.out.println("reduce t:t*f"); :}

| f

{: System.out.println("reduce t:f"); :}

;

f ::= LPAREN e RPAREN

{: System.out.println("reduce f:(e)"); :}

| ID:s

{: System.out.println("reduce f:ID " + s); :}

;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 4

WHAT CUP GENERATES

To run CUP on a spec file foo.cup:

java -classpath java-cup-11a.jar java_cup.Main < foo.cup

or:

java -jar java-cup-11a.jar < foo.cup

(where you can substitute the location of your CUP jar file in the
-classpath or -jar).

By default, CUP generates:

• a file parser.java containing a class parser with constructor

public Parser(java_cup.runtime.Scanner s);

and method

public java_cup.runtime.Symbol parse()

throws java.lang.Exception;

• a file symbol.java containing a class symbol that defines enumeration
values for each of the terminals.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 5

USING CUP (CONTINUED)

The Parser constructor should be passed an object of some lexical ana-
lyzer class that implements the interface:

interface java_cup.runtime.Scanner {

public java_cup.runtime.Symbol next_token()

throws java.lang.Exception;

}

Note that the set of terminal tokens is derived from the parser spec, but
must be used correctly by the scanner.

The parser and lexer need to be linked with the library package
java cup.runtime.

All of this glue mechanism can be customized; for the fab project, you
should use the framework provided with the assignment.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 6

EXPRESSING (E)BNF IN CUP

BNF production A→α| β is written:

A ::= α {: action for A → α :}

| β {: action for A → β :}

;

Constructing lists, e.g., idlist →ID{,ID} :

• Left-recursion is most efficient:

idlist ::= ID

| idlist COMMA ID

;

• Right-recursion also works:

idlist ::= ID

| ID COMMA idlist

;

• Lists with 0 or more items are easy:

list ::=

| list item

;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 7

CUP CONFLICTS

Recall that ambiguous grammar can have shift-reduce and reduce-reduce
conflicts, e.g., input ID + ID + ID with grammar

e ::= e PLUS e

| ID

;

When parser has seen ID + ID, it can either:

• shift next +, reaching ID + ID + ID, and then reduce rightmost ID +

ID, producing final result ID + (ID + ID); or

• reduce ID + ID to e before reading next +, producing final result (ID +

ID) + ID.

By default, CUP handle shift/reduce conflicts by shifting . This often gives
the desired effect, so having shift/reduce conflicts in grammar is
considered “ok.”

CUP handles reduce-reduce conflicts by reducing with rule listed first in
grammar. This is seldom what you want, so having reduce/reduce
conflicts in grammar is considered “bad style.”
PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 8

CUP PRECEDENCE & A SSOCIATIVITY

To get non-default behavior you can give CUP explicit precedence and
associativity info for any token and/or any grammar rule.

For tokens, associativity is specified by precedence left or right dec-
larations, and precedence is specified by the order of the declarations
(highest precedence last). E.g.:

precedence left PLUS, MINUS;

precedence left TIMES, SLASH;

precedence right UPARROW;

Precedence/associativity of rules is normally given by that of rightmost
terminal:

e ::= e PLUS e rule has prec/assoc of PLUS

| e TIMES e rule has prec/assoc of TIMES

;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 9

HOW DECLARATIONS WORK

On shift/reduce conflicts, CUP shifts if the input symbol has higher
precedence than the reduction rule, reduces if symbol has lower
precedence, and uses rule associativity to choose if precedences are
equal.

Examples:

Parse Stack Input Action

e PLUS e TIMES SHIFT

e TIMES e PLUS REDUCE e → e TIMES e

e PLUS e PLUS REDUCE e → e PLUS e

e UPARROW e UPARROW e SHIFT

With above declarations, can use ambiguous grammar directly:

e ::= e PLUS e | e MINUS e | e TIMES e

| e SLASH e | e UPARROW e

| LPAREN e RPAREN | ID ;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 10

CUP UNARY OPERATORS

Sometimes want a single operator to have different associativity or
precedence in different rules. E.g., want minus symbol (MINUS) to have
higher precedence when used as a unary operator than when used as a
binary operator.

CUP allows you to set the precedence of a rule directly by adding a %prec

qualifier to it. Unary minus is then handled by defining a “pseudo-terminal”
for it, with appropriate precedence.

terminal UNARYMINUS; (pseudo-token declaration)
precedence left PLUS, MINUS;

precedence left TIMES, SLASH;

precedence left UNARYMINUS;

precedence right UPARROW;

e ::= e PLUS e | e MINUS e | e TIMES e | e SLASH e

| MINUS e %prec UNARYMINUS

(give rule prec/assoc of UNARYMINUS rather than of ’-’)
| e UPARROW e | LPAREN e RPAREN | ID

;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 11

SYNTAX-DIRECTED TRANSLATION

Use grammatical structure of language to guide translation into
lower-level form.

Traverse parse tree (constructed or virtual) evaluating semantic rules .

Semantic rules (“attribute equations”):

• Assign values to attributes attached to nodes of parser tree.

Examples: type or value of expression; code for statement block.

• Perform side-effects on global state.

Examples: make entries in symbol table; issue errors; generate code to
output file.

Attributes are pieces of information (any kind!) attached to nodes of a
grammar-induced tree.

Semantic rules are associated with grammar productions , because
each tree node is “built” by a production. (Terminal nodes are assumed to
have their attributes “at the beginning.”)

Collectively, semantic rules make up an attribute grammar .

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 12

ATTRIBUTE EVALUATION

Attribute grammars can be used with a parse tree (real or virtual) or an
abstract syntax tree.

Evaluation order of semantic rules may or may not follow reduction
order during parser: depends on form of rules.

Computing attribute values is called annotating or decorating the tree.

If used with parse tree, often try to compute attribute values while
parsing . Sometimes, attributes are more important than parse tree itself,
e.g., can use attribute grammar on parse trees to compute AST as an
attribute!

More complicated attribute equations may require whole tree to exist first,
before attribute evaluation begins.

An attribute is:

• “synthesized ” if its value at a node depends only on values of
attributes of descendents of that node; or

• “inherited ” if its value at a node depends only on the values of
attributes of ancestors and/or siblings of that node.
PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 13

SYNTHESIZED ATTRIBUTES ON PARSE TREES

Synthesized attribute values at a non-terminal node depend only on
values at node’s children . Values at terminal nodes are provided by
lexical analyzer.

Example: desk calculator (“run-time” actions)

S → E print (E.val)

E → E1 + E2 E.val := E1.val + E2.val

E → E1 * E2 E.val := E1.val * E2.val

E → (E1) E.val := E1.val

E → I E.val := I.val

I → I1 digit I.val := 10 * I1.val + digit.lexval - ’0’

I → digit I.val := digit.lexval - ’0’

Attributes can be evaluated bottom-up .

Evaluation can be done while parsing (either top-down or bottom-up).

When parsing bottom-up, at time of a reduction all attribute values on
RHS are known, so LHS can be computed.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 14

EXAMPLE

“Decorated” parse tree for input 23*5+4. S
(print 119)

E.val = 119

‘+’

E.val = 5

I.val = 5

digit.lexval = ’5’

E.val = 115

E.val = 23

E.val = 4

I.val = 4

digit.lexval = ’4’

‘*‘

I.val = 23

I.val = 2

digit.lexval = ’2’

digit.lexval = ’3’

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 15

SEMANTIC STACK METHOD

Implements synthesized attribute evaluation in bottom-up shift-reduce
parser.

Semantic stack is manipulated in parallel with parser stack.

When a terminal is shifted onto parser stack, its attributes are pushed
onto semantic stack.

Before a reduction A→α1α2 . . . αk, the top k values on semantic stack
are attributes for RHS.

After the reduction, the top value is the synthesized attribute for LHS
non-terminal.

Parse stack and semantic stack always have equal depths. Even when a
grammar symbol has no useful attribute, there is a placeholder for it on
the semantic stack.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 16

EXAMPLE (DESK CALCULATOR)
Parse Stack Semantic Stack Input Action

23*5+4$ shift

digit ’2’ 3*5+4$ reduce I→digit

I 2 3*5+4$ shift

I digit 2 ’3’ *5+4$ reduce I→Idigit

I 23 *5+4$ reduce E→I

E 23 *5+4$ shift

E * 23 5+4$ shift

E * digit 23 ’5’ +4$ reduce I→digit

E * I 23 5 +4$ reduce E→I

E * E 23 5 +4$ reduce E→E*E

E 115 +4$ shift

E + 115 4$ shift

E + digit 115 ’4’ $ reduce I→digit

E + I 115 4 $ reduce E→I

E + E 115 4 $ reduce E→E+E

E 119 $ reduce S→E

S $ accept

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 17

CUP CALCULATOR

terminal PLUS,TIMES,LPAREN,RPAREN;

terminal Character digit; (this token has a Character attribute)
non terminal Integer S,E,I; (these non-terminals have Integer attributes)

S ::= E:e {: System.out.println(e); :}

;

E ::= E:e1 PLUS E:e2 {: RESULT = e1 + e2; :}

| E:e1 TIMES E:e2 {: RESULT = e1 + e2; :}

| LPAREN E:e RPAREN {: RESULT = e; :}

| I:i {: RESULT = i; :}

;

I ::= I:i digit:d {: RESULT = 10 * i + Character.digit(d,10); :}

| digit:d {: RESULT = Character.digit(d,10); :}

;

The type of the attribute can be different for each terminal and
non-terminal, and must be declared in the CUP specification.

Items on the semantic stack must be objects , e.g. instances of class
Integer or Character; they can’t be bare ints or chars. The action code
here is relying on automatic wrapping and unwrapping of these types.

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 18

CUP VALUE (SEMANTIC) STACK

CUP-generated parser automatically maintains values as well as parser
states on its parsing stack stack, with top-of-stack pointer top.

The parsing stack contains Symbol objects, each of which has a field

Object value;

Symbol objects can represent either terminals or non-terminals.

For Symbol objects representing terminals (obtained from the lexical
analyzer) the value field is the “attribute” set by the lexer, e.g., the string
associated with an ID or the value of an INTEGER literal.

On a shift : a lexer-generated Symbol is pushed on the parse stack.

On a reduce : user action code is executed with the labels bound to the
value fields of symbols in the handle (near the top of the stack). The
symbols in the handle are then popped from the stack, and a new Symbol

(representing the LHS non-terminal) is pushed, with its value field is set
to the RESULT specified in the action.

Note: Symbol objects also carry source-file position information (left and
right fields) which is automatically propagated during reduction steps.
PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 19

EXAMPLE FROM DESK CALCULATOR

E ::= E:e1 PLUS E:e2

{: RESULT = new Integer(e1.intValue() + e2.intValue()); :}

(Here the wrapping and unwrapping between Integer and int as been
made explicit.)

Suppose this rule is reduced when the value fields of the symbols near
the top of stack look like this:

E:e1 PLUS E:e2

v1 v2 v3

Then e1 is bound to v1, e2 is bound to v3, and the action is executed,
producing a new symbol with value = RESULT. So the action is roughly
equivalent to:

Symbol s = new Symbol();

s.value = new Integer(

stack.elementAt(top-2).intValue() +

stack.elementAt(top-0).intValue());

stack.pop(3); stack.push(s); top -= 2;

PSU CS321 F’10 LECTURE 11 c© 1992–2010 ANDREW TOLMACH 20

