
CS 321 Homework 2 – due 4:30pm, Wednesday, October 27, 2010

Lexical Analysis

Write a lexical analyzer for the fullfab language. The lexical structure is described in Section 2 of
thefab Programming Language Reference Manual.

Your lexical analyzer must be implemented as a class of the following form:

class Yylex {
Yylex(java.io.InputStream s) { ... };
public Symbol yylex() throws java.io.IOException,

ParseError { ... };
}

The lexical analyzer will consume source text from the specifiedInputStream and produce to-
kens, with their associated line numbers, and attributes where appropriate. Each call toyylex()
returns one token; tokens are returned as instances of theSymbol class. If any portion of the input
text cannot be converted to a legal token,yylex() should throw an instance ofParseError
with an appropriate informative error message.

Definitions ofSymbol andParseError are available from the course web page.Symbol
includes an enumeration of the possible token codes, and provides a function to convert them to
printable names. Token names are as follows:

• ID for identifiers.

• INTEGER for integers.

• REAL for reals.

• STRING for strings.

• Keywords token names are simply the keywords themselves, but converted to upper-case.

• Operator and delimiter token names are according to the following table:

AT @ LT < LPAREN (
ARROW -> LEQ <= RPAREN )
ASGN := GT > LSQBRA [
PLUS + GEQ >= RSQBRA ]
MINUS - EQ = LCUBRA {
TIMES * NEQ <> RCUBRA }
SLASH / COLON :

SEMI ;
COMMA ,
DOT .

1



The following token types have an associated attribute object: ID (aString containing the iden-
tifier), INTEGER (anInteger containing the integer value),REAL (a String containing the
lexeme matching the real pattern), andSTRING (a String containing the string, without its
enclosing double-quotes ("")).

A suitable driver for the analyzer, calledLexerDriver, is also provided on the course web page.
It has the following definition:

class LexerDriver {
public static void main(String argv[])

throws java.io.IOException {
Yylex yy = new Yylex(System.in);
Symbol t;
try {

while ((t = yy.yylex()).sym != Symbol.EOF)
System.out.println(t);

} catch (ParseError e) {
System.err.println (e.getMessage());

}
}

}

This driver reads afab program from standard input, and prints the resulting tokenstream, one
token per line, on standard output. Any errors are sent to standard error. For example, the input
stream

write (4, "= 2+2 =", [* newline here! *]
4.00);

should produce the output

1: WRITE
1: LPAREN
1: INTEGER 4
1: COMMA
1: STRING "= 2+2 ="
1: COMMA
2: REAL 4.00
2: RPAREN
2: SEMI

A working implementation ofYylex is in on the web page in fileYylex.class. Your program
should generate the same output as this one, except that errors (sent to standard error) may be dif-
ferent in format (though not in substance). Note that checking for lexical errors is a very important
part of the assignment; failing to implement error checks correctly can have a large impact on your
score.

2



Implementation and Assignment Submission

All you need to implement is theYylex class, which must operate correctly in conjunction with
the other provided classes.

You are strongly encouraged (though not required) to use thelexical analyzer generator tool
JFlex. You can download a copy ofJFlex, including documentation, from the course web
page. The User’s Manual describes how to install and useJFlex.

If you choose to useJFlex, you should submit a single filefab.lex containing yourJFlex
specification. (Remember, if you need to define any additional auxiliary classes, you can put
them at the top of yourJFlex file.) When fed toJFlex, your specification must produce a
file Yylex.java that defines a classYylex with constructor andyylex function as described
above; you may need to use some of theyylex % options to make this happen properly.

If you choose not to useJFlex, you must write your lexer by hand; you maynot use a different
lexer-generator tool. If you choose this option, submit a single fileYylex.java defining class
Yylex in the usual way.

In either case, your file should be submitted as a plain text attachment to a mail message
sent to cs321-03@cecs.pdx.edu. Your code must work correctly with the provided
LexerDriver, Symbol, andParseError classes; you maynot modify these classes, and
you should not submit any code for them. We will process your submission by creating a fresh
directory, copying in the provided.java files and saving your attachment. If you submit a.lex
file, we will pass it throughJFlex to obtain a fileYylex.java. We will then execute

javac Yylex.java Symbol.java ParseError.java LexerDriver.java

To test the resulting program on afab file foo.fab, we should be able to type

java LexerDriver < foo.fab

Note that we will be using automated mechanisms to read, compile, and test your programs, so
adherence to this naming and mailing policy is important! You may lose points if you fail to
submit your program in the correct way.

3


