Thefab Programming Language
Reference Manual

(© 2010 Andrew Tolmach
Dept. of Computer Science
Portland State University

(version of November 26, 2010)

1 Introduction

Thefab language is a small imperative programming language wihdlass functions, extensible record values with
implicit pointers, arrays, integer and real variables, anidw simple structured control constructs. It bears many
similarities to an earlier language, PCAT, designed by Aadfolmach and Jingke Li.

This manual gives an informal specification for the langu&gagments of EBNF syntax are introduced at relevant
points in the text; the complete grammar is given in Secti®n 1

2 Lexical Issues

fab’s character set is the standard 7-bit ASCII $eh is case sensitive; upper and lower-case letteraatreonsidered
equivalent.

Whitespace (blank, tab or newline characters) serves taragptokens; otherwise it is ignored. Whitespace is
needed between two adjacent keywords or identifiers, ordmtva keyword or identifier and a number. However, no
whitespace is required between a number and a keyword, #ircceauses no ambiguity. Delimiters and operators
don’t need whitespace to separate them from their neighdboesther side. Whitespace may not appear in any token
except a string (see below).

Commentsare enclosed in the pdirr and*] ; they cannot be nested. Any character is legal in a commeht. O
course, the first occurrence of the sequence of charactersill terminate the comment. Comments may appear
anywhere a token may appear; they are self-delimiting,they do not need to be separated from their surroundings
by whitespace.

2.1 Tokens

Tokens consist of keywords, literal constants, identifieperators, and delimiters.
The following are reservekkywords

and by di v do el se el sif
exit ext ends for func if | oop
nod not of or r ead record
return t hen to var whi l e wite

Literal constants are either integer, real, or strimjegers(denoted NTEGERin the grammar) contain only digits;
they must be in the range 0 88! — 1. Reals(denotedREAL in the grammar) consist of one or more digits, followed
by a decimal point, followed by zero or more digits. Theredsspecific range constraint on reals, but the literal as a
whole is limited to 255 characters in length. Note that no atioliteral can be negative, since there is no provision
for a minus sign.Strings(denotedSTRI NG in the grammar) begin and end with a double qudfeand contain any
sequence of printable ASCII characters (i.e., having dattharacter codes in the range 32 — 126) except double



guote. Note in particular that strings may not contain tatxsewlines. String literals are limited to 255 characters in
length, not including the delimiting double quotes.

Identifiers(denoted Din the grammar) are strings of letters and digits starting) wiletter, excluding the reserved
keywords. Identifiers are limited to 255 characters in langt

The following are theperators

@ -> = + - * / < <= > >= = <>
and thedelimiters

N D

For clarity, these are written within single quotes in thargmatr.

3 Programs

program —  {recordtype-dedl block

A program is the unit of compilation fdiab. It consists of (optional) record type declarations antdlevel
block It is executed by executing its top-level block and themiaating.

Each file read by the compiler must consist of exactly one gamog There is no facility for linking multiple
programs or for separate compilation of parts of a program.

4 Blocks

block — '{' block-items }’
block-items —  [block-item{’; ’ block-iterm}]
block-tem — declaration| statement

A block is a sequence of declarations and statements, whagtbe freely intermixed. It is executed by elaborating
each declaration and executing each statement in order.

5 Declarations

All identifiers occurring in a program must be introduced bgexlaration, except for a small set of pre-defined
identifiers:r eal , i nt eger, bool ean, uni t,true, f al se (see Section 6.2), and | (see Section 6.5). Each
declaration serves to specify whether the declared identéipresents a type, a variable, or a function (all of which
live in a singlename spaceor a record component name (which live in separate namespsge Section 6.5).

The only kind of types that can be declared are record typesof type declarations occur at the beginning of
the program, are mutually recursive, and are in scope thauighe program. Description of their syntax is defered
to Section 6.5.

Variable and function declarations are local to a block dhidsesub-blocks. Global declarations are simply those
that appear in the top-level block.

declaration — var-decl| funcs-decl

The scopeof a declaration extends roughly from the point of declarato the end of the enclosing block. The
exact scope rules depend on the kind of declaration (se®8s8&tand 9). A declaration of an identifier within a nested
functionhidesany declarations in outer functions and makes them inaittess the scope of the inner declaration.
No identifier may be declared twice in the same function. Tii#-n identifiers may not be redeclared anywhere in
the program. An identifier declared as a record type name rmglyerredeclared anywhere in the program.

Declaration elaboration can have computational sideztffeso the order of declarations and statements matters
even when scope is not an issue.



6 Types

fab is a strongly-typed language; every expression has a utygee and types must match at assignments, calls, etc.
There is a simple notion of subtyping based on records extengsee Section 6.5) and for the numeric types (see
Section 6.2).

The built-inbasic typegsee Section 6.2) and declared record types are referedypébynamesNew record types
are created byecord type declarationésee Section 6.5). Function and array types cannot be nahmdare always
created “on the fly” by applying the type constructersand@ respectively, to existing types.

fab uses anixedequivalence model for types. For recomdameequivalence is used: each record type declaration
produces a new, unique type, incompatible with all the alexcept possibly for subtyping). For functions and array,
structuralequivalence is used: two types are equivalent if they résultpplying the same constructor to equivalent
types (again, with possible subtyping).

6.1 TypeExpressions

type-expr — 1D
—  '@type-expr
—  type-args: >’ type-expr
— (' type-expr)’
type-args — (')’
—  type-expr
— (" type-expr{’, ' type-expi ')’

The function type constructor §) is right-associative and has lower precedence than tlag aomstructor @.
Parentheses may be used in type expressions to alter asgtyota to improve readability.

6.2 Built-in Types

There are foubuilt-in basic typesi nt eger, r eal , bool ean, anduni t . Integer literal constants all have type
i nt eger, real literal constants all have typeal , and the built-in valuesr ue andf al se have typebool ean.
The typeuni t is used to specify the return type of functions that don'tineta useful value (similar twoi d in
C/C++/Java); its (sole) value cannot be denoted in programs

i nt eger andr eal collectively form thenumerictypes. Ani nt eger value will always be implicitlycoerced
to ar eal value if necessary. The boolean type has no relation to theeria types, and a boolean value cannot be
converted to or from a numeric value.

6.3 Array Types

An array is a structure consisting of zero or more elemente@Sameslement type An array type is written ag
followed by an expression for the element type. The elemefrés array can be accesseddsreferencingising an
index which ranges from 0 to the length of the array minus 1. Thgtlewf an array is not fixed by its type, but is
determined when the array is created at runtime. It is a @kokntime error to dereference outside the bounds of an
array.

6.4 Function Types

Function types, written with an> constructor, describe functions taking zero or more patara&nd returning a
result (possiblyuni t). Normally, the parameter types are written as a commaraggghlist within parentheses; the
parentheses may be omitted when there is exactly one pagambe body of a function is a block.

Functions are fully first-class ifab; that is, in addition to being called, they can also be stana@riables, arrays
or records, or returned as the result of other functionsctaoim declarations can appear at any level of block nesting,
and their bodies can freely dereference local variablesfamctions of enclosing blocks. However, the body of a
nested function can onlypdatevariables declared within the function’s own block or in thp-level block.



6.5 Record Types

A record type is a structure consisting of a fixed numberarhponentsf (possibly) different types. Unlike the other
types, record types must be declared by name before theyecaseal.

recordtype-decl — record I D [extends | D '{ [ids-and-types} ’;’

ids-and-types — id-and-type{’, ' id-and-type

id-and-type — | D": " type-expr

The record type declaration specifies the name of the regpe] tin optional named super-type that this record
type extends, and the name and type of each component. Cemipoames are used to initialize and dereference
components; the components for each record type form aaepsmespace, so different record types may reuse the
same component names. Component names must be uniqueedttimecord type.

The special built-in valuai | belongs to every record type. Itis a checked runtime errdeteference a compo-
nent from the nil record.

All record types are potentially mutually recursive; thatall record type names are in scope to define all compo-
nents of all records. Note the utility of tié | record for building values of recursive types.

A record type declaration can optiona#ixtendanother record type, called isiper-typeIn this case, the present
type contains all the components of the super-fypaddition tothe components listed. If the super-type is itself an
extensionijts super-type components are included as well, and so fortmp@aent names must be unique across the
entire set of components. For example, given the declarstio

record T{a:int}
record U extends T {b: bool}

records of typ€el contain a single componeat i nt and records of typ& contain two components: i nt and
b: bool . No chain of super-types may contain a cycle.

An extended type is automatically coerced to its super-fgpthe super-type of its super-type, and so on) whenever
this is demanded by the context in which it is used. This makese because the context that wants a super-type can
just ignore the additional fields defined by the extensiont Bis coercion only works when one record type is
explicitly declared as the extension of another, not mewdign one type has a superset of another’s components.
Given the declaration

record W{a:int, b:bool}

records oflWcontain the same components as those of tydmut they are not automically coerced to type

6.6 Subtyping

Type equivalence checks are performed “up to subtypinghiaba subtype can always be used in place of a supertype.
Subtyping is transitive: if is a subtype of. andu is a subtype ofv, thent is a subtype ofv.

The two basic forms of subtyping have already been describéshers can be treated as reals, and the value of
an extended record type can be treated as having its syper-Becord subtyping isominal one record type is a
subtype of another only when it is explicitly declared as se®sion.

For functionsfab uses astructuralsubtyping rule, as follows: a function tyge,, . . . , t,) -> t is asubtype
of (uy, ..., u,) -> uif uis a subtype ot andt; is a subtype of:; for eachi < n. Note that the subtyping
relation iscovarianton the result type butontravarianton the parameter types.

Each array types has only itself as a (trivial) subtype. Soattiay type@ is a subtype ofak only if t = u; in
particular, it is not sufficient fot to be a subtype (or supertype)of

6.7 Constructed Type Values

Arrays and records are always manipulated by value, so @ adlan array or record type is “really” a pointer to a
heap object containing the array or record, though thistpoicannot be directly manipulated by the programmer.
Thus, a record type that appears to contain other record gpeomponents actually contains pointers to these types.
In particular, a record type may contain (a pointer to) ftasla component, i.e., it may be recursive.

Similarly, values of function types are also representdutap objects, calleclosureg(see Section 9).



Records, arrays, and closures have unlimited lifetimes;hiap object containing one of them exists from the
moment when its defining expression or declaration is et@tligsee Sections 11.6 11.7, and 9) until the end of the
program. In principle, a garbage collector could be useéoave heap objects when no more pointers to them exist,
but this would be invisible to théab programmer.

7 Constants

There are threbuilt-in constanvalues:t r ue andf al se of typebool ean, andni | , which belongs to every record
type. There is no provision for user-defined constants.

8 Variables
var-decl — var | D[:’type-expt’: =" expression

Every variable must have an initial value, givendsypr essi on. The type declaration can be omitted whenever
the type can be deduced from the initial value (which is abyagssible except when the initial valuenisl ).

A var declaration is elaborated by evaluating the initializikgression and storing the resulting value into the
specified variable.

The scope of each declared variable begins just after tHardéion; it doesiotinclude the variable’s own initial-
izing expression, so declarations are never recursive.

9 Functions

funcs-decl —  func func-dec{and func-dec}

func-decl — | D’(’ [ids-and-types) ' [ - >' type-expf block
ids-and-types — id-and-type{’, ' id-and-typg

id-and-type — | D’:’type-expr

Functions may or may not explicitly return a value. If theyrdw, they are considered to have return type t ;
in this case, the return type can be omitted altogether flanfunction declaration. Functions returningi t can
only be a invoked by the execution of a calhitementthose that return a nomni t value can only be invoked by
evaluating a caléxpressiorand their return value becomes the value of the call expessi

A function have zero or morf®rmal parameterswhose names and types are specified in the function ddolarat
and whose actual values are specified when the functioniisted. The scope of formal parameters is the function
block. All parameter names must be distinct. Parameteralaays passed by value.

The body of a function is a block. A function is activated bgding the formal parameters to the actual argument
values, executing the function’s defining block, and fina#iyurning to the calling function. There is an implicit
r et ur n statement at the bottom of every function body.

Each set of functions declared following a sinfjlenc keyword (and separated land keywords) is treated as
(potentially) mutually recursive; that is, the scope offemction name begins at the point of declaration of the first
function in the set, and includes the bodies of all the furdiin the set as well as the remainder of the enclosing
block.

Elaboration of a function declaration causes creation@dbaureobject on the heap, which contains a pointer to
the function’s code together with tleerrrent valuesf any variables dereferenced in the function body that ecteded
in outer enclosing blocks other than the top level. Storimgwvalue of each non-local variable in the closure allows a
function body to access it even after the activation of thieioblock where it was declared has terminated. However,
because the values in the closure are only copies, it doesnake sense to update them, so this is prohibited. The
need to store values in closures and the restriction on aphahot apply to top-level variables, since these are active
for the entire duration of the program.

A fab implementation may perform optimizations to avoid conding closure objects in some circumstances,
but such optimizations will not be visible to thiab programmer.



10 L-values

An |-valueis a location whose value can be either read or assignecablasi, function parameters, record components,
and array elements are all I-values.
lvalue — |ID
— lvalue [’ expression]’
— Ivalue’.’ I D

The square brackets notatidn] () denotes array element dereferencing; the expressioinviith brackets must
evaluate to an integer expression within the bounds of ttaar

The dot notation.() denotes record component dereferencing; the identifter #fe dot must be a component
name within the record.

11 Expressions

11.1 Simpleexpressions

— number
— Ivalue
— ’(’expression}’
number — | NTEGER | REAL
A number expression evaluates to the literal value specifidate that reals are distinguished from integers by

lexical criteria (see Section 2). An |-value expressionl@ats to the current contents of the specified location.
Parentheses can be used to alter precedence in the usual way.

expression

11.2 Arithmetic operators

— unary-op expression
—  expression binary-op expression
unary-op — -’
binary-op — '+ |’-"|'+" |’/ |di v |nod

Operatorst, -, * require integer or real arguments. If both arguments asgars, an integer operation is per-
formed and the integer result is returned; otherwise, atggar arguments are coerced to reals, a real operation is
performed, and the real result is returned. Operatogquires integer or real arguments, coerces any integer arg
ments to reals, performs a real division, and always retameal result. Operatodi v (integer quotient) andod
(integer remainder) take integer arguments and return tagen result. All the binary operators evaluate their left
argument first.

expression

11.3 Logical operators

expression —  unary-op expression
—  expression binary-op expression
unary-op — not

binary-op — or |and

These operators require boolean operands and return aalpa@lsult.or andand are “short-circuit” operators;
they do not evaluate the right-hand operand if the resukisrchined by the left-hand one.

11.4 Relational operators

expression —  expression binary-op expression
blnal’y-Op N 1>1 |1<1 |1:y |1>:1 |’<:i |1<>1

These operators all return a boolean result. These opsrallovork on numeric arguments; if both arguments
are integer, an integer comparison is made; otherwise,raageér argument is coerced to real and a real comparison



is made. Operators and<> also work on pairs of boolean arguments, or pairs of recom @y arguments of the
same type; for the latter, they test “pointer” equality {tisawhether two records or arrays are the same instance, not
whether they have the same contents). These operatorsialbé their left argument first.

11.5 Function call

expression — expression(’ expressions)’
expressions — [ expressiod’, ' expression]

This expression is evaluated by evaluating the operataesson to obtain the function closure value, and then the
argument expressions left-to-right to obtain actual patamvalues, and finally executing the function with its fatm
parameters bound to the actual parameter values. The danetiurns by executing an expliciet ur n statement
(with an expression for the value to be returned), so themdipe must not beni t . The returned value becomes
the value of the function call expression.

11.6 Record construction

expression — | D’{’ [comp-init$’}’
comp-inits —  comp-init{’, ' comp-init}
comp-init — | D’: =" expression

If typenames a record type name, théypename{id;: =expi, ids: =exps, ...} evaluates each expression left-
to-right, and then creates a new record instance of typenamevith named components initialized to the resulting
values. The names and types of the component initializest match those of the named type (including any com-
ponents inherited from a super-type), though they needeot the same order.

11.7 Array construction

expression — '@type-expr {’ [array-inits '}’
array-inits —  array-init { ', " array-init}
array-init — [ expressiorof | expression

The expressio@expr {expr} of expry, expry of expry, ...} evaluateseach pairof expressionsin left-
to-right order to yield a list of pairs of integer coumtsand initial values);, and then creates a new array instance with
elements of typéexprwhose contents consist of copies ofvy, followed byn, copies ofvs, etc. If any of the counts
is 1, it may be omitted. For example, the specificai@mt eger {1, 2 of 3,3 of 2, 4} yields an integer array
of length 7 with contentd, 3, 3, 2, 2, 2, 4. If any of then; is less than 1, no copies of the correspondipgre
included. The types of the must matchexpr.

11.8 Precedence and associativity

Function call and parenthesization have the highest (modirm) precedence; followed by unary followed by*,
/', nod, anddi v; followed by + and- ; followed by the relational operators; followed byt ; followed by and;
followed byor .

The binary arithmetic and logical operators are all leRegsative. The relational operators are non-associative;
other words, an expression suchsass b = c isillegal, although one such §¢& = b) = c islegal (presuming
¢ has typeébool ean.

12 Statements
12.1 Block

statement —  block

A block may be introduced at any point where a statement is&begl.



12.2 Assignment

statement — Ivalue : =’ expression

The I-value is evaluated to a location; then the expressienaluated and its value is stored in the location.
Assigning a record or array value actually assigns a potottre record or array.

12.3 Function Call

statement — expression(’ expressions)
expressions — [ expressiod’, ' expression]

This statement is executed by evaluating the operator sgjmreto obtain the function closure value, and then the
argument expressions left-to-right to obtain actual patamvalues, and finally executing the function with its fatm
parameters bound to the actual parameter values. The danttiist have return typeni t . The function returns
when its final statement or an expliciet ur n statement (with no expression) is executed.

124 Read

statement — read’(’Ivalue{’, ' Ivalue}’)’

This statement is executed by evaluating the I-values tatios in left-to-right order, and then reading numeric
literals from standard input, evaluating them, and asaigthe resulting values into the locations. The I-valuestmus
have type integer or real, and their types guide the evalnati the corresponding literals. Input literals are defédi
by whitespace, and the last one must be followed by a carretgen.

125 Write
statement —  write’(’write-params’)’
write-params —  [write-expr{’, ' write-expr}]
write-expr —  STRI NG| expression

Executing this statement evaluates the specified expresgichich must evaluate to integers, reals, booleans, or
string literals) in left-to-right order, and then writegttresulting values to standard output (with no separatitmdsn
values), followed by a newline.

12.6 If-then-else

statement — i f expression hen statement
{el si f expressiorn hen statemerit
[el se statemerit

This statement specifies the conditional execution of gechedatements. The expression preceding a statement
sequence, which must evaluate to a boolean, is callegudsd The guards are evaluated in left-to-right order, until
one evaluates tbr ue, after which its associated statement sequence is exedtiedguard is satisfied, the statement
sequence following thel se (if any) is executed.

In cases of ambiguity, aml se orel si f is always attached to the nearest previbfistatement.

12.7 While
statement — whi | e expressiordo statement

The inner statement is repeatedly executed as long as tihessign evaluates ta ue, or until anexi t from the
loop (see Section 12.10).



12.8 Loop

statement — | oop statement

The inner statement is repeatedly executed untéxint occurs (see Section 12.10).

129 For

statement — for | D’: =" expressiort o expressior] by expressioh
do statement

Executing the statemehbr id : = exp; to exps by exps do stis equivalent to the following steps: (i)
evaluate expressiorsp;, exps, andexps in that order to values,, vo, v3 (Wwhich must be integers); (ii) if the value
of id is less than or equal t@, executest; otherwise terminate the loop. (iii) sét := id + vs3 and repeat step (ii).

If the by clause is omittedys is taken to be 1.

The loop indexd is an ordinary integer variable; it must be declared in tlopsaontaining thef or * statement,
and it can be inspected or set above, within, or below the lhmmjy.

The normal execution of the loop can be interrupted earlyrbgnd t statement (see Section 12.10).

12.10 Exit

statement — exit

Executingexi t causes control to pass immediately to the next statemdawolg thenearesenclosingnai | e,
| oop orf or statement. If there is no such enclosing statemengkhd is illegal.

12.11 Return

statement — ret ur n [expressioh

Executingr et ur n terminates execution of the current function and returmgrobto the calling context. There
can be multiple et ur ns within one function body, and there is an implicét ur n at the bottom of every function.
A r et ur n from a function with return type other thami t must have a return value expression of the return type; a
r et ur n from a function with return typeni t must not. The top-level program block must not includesd ur n.



13 Complete Concrete Syntax

program —  {recordtype-dedl block
recordtype-decl — record I D [extends |D]’{’ [ids-and-types }'’;"’
ids-and-types — id-and-type{’, ' id-and-type
id-and-type — | D": " type-expr
block — '{'block-items }’
block-items —  [block-item{’; " block-item}]
block-item — declaration| statement
declaration —  var-decl| funcs-decl
var-decl — var | D[: ' type-expf': =’ expression
funcs-decl —  func func-decKand func-dec}
func-decl — | D'(’ [ids-and-types) ' [ - >' type-expf block
type-expr — |ID

— '@type-expr

—  type-args: >’ type-expr

— (' type-expr)’
type-args — ()

—  type-expr

— (" type-expr{’, " type-exp ')’
statement — lvalue . =" expression

— expression(’ expressions)’

— read’('lvalue {’, "Ivalue} ")’

—  write’(’ write-params)’

— 1 f expression hen statement

{el si f expression hen statemerit
[el se statemerijt

whi | e expressiordo statement

| oop statement

for 1D’: =" expressiort o expressior by expressioh
do statement

exit

r et ur n [expressioh

block

[write-expr{’, ’ write-expr}|

STRI NG| expression

number

Ivalue

(" expression)’

unary-op expression

expression binary-op expression
expression( ' expressions)’

| D'{" [comp-init$’}’

'@type-expr {’ [array-inits| '}’

[ expressior{’, ’ expressior]

Ll

write-params
write-expr
expression

expressions

L e e e

Ivalue I D
Ivalue [ " expression]’
Ivalue’. " I D
comp-inits comp-init{’, ' comp-init}
comp-init | D': =" expression
array-inits array-init { ’, ’ array-init }
array-init [ expressiorof | expression
number | NTEGER | REAL
unary-op -’ | not
binary-op "+ |-+ |/ |div]|md]|or |and
S > T | T

10



