
CS321 Languages and Compiler Design I
Winter 2012

Lecture 2

1

A (RE-)INTRODUCTION TO JAVA FOR C++/C PROGRAMMERS

Why Java?

• Developed by Sun Microsystems (now Oracle) beginning in 1995.

• Conceived as a better, simpler version of C++.

• Imitated by C#.

Notable Characteristics

• Supports object-oriented programming.

• Strong static type safety.

• Garbage collection; strong memory security at runtime.

• Highly portable, via bytecode intermediate representation.

Why Java in this course?

• Good choice for project: higher level than C, but simpler than C++.

• Good choice for study of languages: modern, well-designed, widely
used.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 2

LEARNING A LANGUAGE : RESOURCES

Sun documentation URL (for version 1.7):
http://docs.oracle.com/javase

Textbooks and Tutorials

• Arnold, Gosling, Holmes The Java Programming Language, 4th ed.
(book)

• Eckel, Thinking in Java, 4th ed. (book or on web – see course syllabus)

• Many, many other books...

• Vendor’s Java tutorials, on web at Oracle.

Language and Library Specifications

• Java Language Specification, 3rd. ed., (on web at Oracle) (Very hard
reading!)

• Java Platform API Specification (version-specific; on web at Oracle)

Users manuals for Implementation

• Java JDK Tools and Utilities (version-specific; on web at Oracle)

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 3

JAVA VERSIONS

Language has had several revisions, usually identified by Oracle’s JDK
version numbers.

• Currently at version 1.7 (approximately; depends on platform)

• Last major language changes occured at 1.5.

• Course will assume 1.6; doesn’t matter too much which exact version
you use, as long as it 1.6 or later.

• Confusingly, Sun/Oracle sometimes refer to version 1.n as Java n.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 4

PRIMITIVE TYPES: NUMERICS

A small collection of types are completely “built-in.”

• Integral types (sizes same on all platforms):

byte (8 bits, signed)
short (16 bits, signed)
int (32 bits, signed)
long (64 bits, signed)
char (16 bits, unsigned – uses Unicode representations)

Integer arithmetic is always performed in 32 bits, unless a long operand
is involved, in which case it is done in 64 bits. Values of smaller sizes are
automatically promoted to larger ones where needed, but conversions the
other way require explicit casts, e.g.,

short c;

short d = (short) (c+1);

• Floating-point types are float (32 bits) and double (64 bits) in IEEE
format.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 5

PRIMITIVE TYPE: B OOLEAN

Booleans are not integers! They form a distinct type boolean with two
literal values true and false.

Boolean operators are the same as in C/C++, except that you cannot do
arithmetic on boolean values. Booleans are used to govern if, for, do,
and while statements as usual.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 6

DECLARATIONS

Declaring variables of primitive types is roughly as in C/C++, but:

• Compiler must be able to convince itself that all variables have been
assigned a value before they are used, e.g.:

int i;

int j = 0;

if (j == 0) // always true, but

i = 1; // compiler doesn’t know that!

i = i + 1; // compile-time error!

Simple approach: always initialize variables in declarations!

• There are no const declarations, but variables can be declared final,
which means that they can only be assigned to once, e.g.,:

final int j = 0; // j is constant

final int i;

i = 100; // i is constant from now on

i = i + 1; // compile-time error!

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 7

EXPRESSIONS AND STATEMENTS

These are mostly the same as in C and C++.

One difference: Java has no goto statement. (But you never use that
anyway, right?)

Instead, it has a labeled break statement, which jumps to the end of
labeled enclosing control structure (for, while, do, or switch).
Unlabeled break jumps to the end of the innermost enclosing control
structure, as usual. For example...

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 8

BREAK EXAMPLE

The code

int i = 0;

outer:

while (true) {

System.out.print (i);

switch (i) {

case 0:

i++; // falls through

case 1:

i += 2;

break; // break out of switch

case 3:

break outer; // break out of while

}

}

System.out.print (99);

prints 0 3 99.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 9

OBJECTS

Every value in Java that does not belong to a primitive type is an object .

Each object is an instance of some class , which is much like a C++
class. Each class definition can contain fields and methods (i.e.,
functions). Constructors are a special kind of method used to create
new instances; they typically initialize the values of the fields.

Each instance object contains its own copy of the field contents
(ordinarily – more below!)

As in C++, methods (including the constructor method) can refer to the
fields of the object for which they were invoked. Unless specifically
restricted, fields can also be read or written from outside the class
definition. (There are several possible kinds of restrictions; the details are
similar but not identical to C++.)

An example using objects....

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 10

// A class to represent points in the plane

class Point {

// Fields contain the point’s coordinates

int x;

int y;

// Constructor for creating points

Point (int xInit, int yInit) {

x = xInit; y = yInit;

}

// Method on points

void translateX (int deltaX) {

x += deltaX;

}

}

...

Point p = new Point(3,4); // create new point object in p

p.translateX(7); // use method to change fields inside object

int x = p.x + p.y // extract current values of fields (x = 14)

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 11

OBJECTS L IVE AT ABSTRACT LOCATIONS IN THE HEAP

Objects are always∗ heap-allocated , i.e., new acts much like in C++.

Objects are never explicitly deallocated. Instead, the Java runtime
system automatically deallocates them when they are no longer pointed
to from anywhere in the running program.

This feature is called garbage collection . It has the huge advantage that
the programmer doesn’t have to worry about deallocation, and can’t
introduce dangling pointers (pointers that still point to deallocated
objects) or space leaks (objects that are still allocated but no longer
pointed to).

Also, object addresses are abstract ; you can’t do pointer arithmetic on
them. (This is crucial for maintaining memory safety.)

(∗ Well, almost always. Clever compilers may be able to avoid the cost of
heap allocation in certain special cases. Since addresses are abstract,
you can’t really tell.)

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 12

OBJECT VALUES ARE REFERENCES

Variables of object type (like p above) always contain references (or
pointers) to objects, rather than objects themselves. That is, the Java
declaration

Point p;

is like the C++ declaration

Point *p;

Similarly, the Java notation

p.x

corresponds to the C++ notations

(*p).x

p->x

Unlike in C++, there is simply no way to declare storage for the object
itself (e.g., on the stack, or inside another object). This is because
fixed-size storage doesn’t work well for object-oriented programming...

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 13

EXAMPLE OF REFERENCES

class Link {

Point p;

Link next;

Link (Point pInit, Link nextInit) {

p = pInit; next = nextInit;

}

}

Point p1 = new Point(0,1);

Point p2 = new Point(2,3);

Link x = new Link(p1, new Link (p2, null));

Since both fields in Link are really references (pointers), the
representation of x in the heap looks like...

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 14

EXAMPLE OF REFERENCES (CONTINUED)

x = 0 y = 1 x = 2 y = 3

p = next = next = nullp =

x =

p1 = p2 =

Note that the special value null, representing an “empty” or “missing”
object, is a legal value for all class types.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 15

COPYING IS SHALLOW

It is crucial to remember that assigning an object variable just assigns a
pointer.

Point p1 = new Point(0,1);

Point p2 = p1; // p1, p2 point to same object

p1.x = 2; // now p2.x == p1.x == 2

To copy the contents of an object, we must copy the individual fields one
at a time. In Java this is called cloning .

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 16

STATIC MEMBERS AND METHODS

Both fields and methods of a class can be declared static .

class Stuff {

static int counter = 0;

static int sqr(int x) { return x * x; }

} ...

Stuff.counter++;

int z = Stuff.sqr(33);

A static field has only one copy, no matter how many objects of the class
are created. In effect, it is like a global variable.

A static method has no associated object; it operates only on its
arguments (and possibly static fields from its own class or other classes).

Both static fields and methods are named using the dot notation, just as
in ordinary field and method references. But for static members, the class
name is what appears before the dot, rather than an expression that
identifies an object. In fact, the semantics of static and non-static
members are very different, so the similarity in notation for accessing
them can lead to confusion.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 17

CLASSES WITHOUT INSTANCES

Many classes contain both static and non-static members, but some
classes contain only static members. Such classes are never used to
create instances (there would be no point, since the instances would
contain no data); they just serve to organize the name space of top-level
global variables and functions.

Example: the System class defined in the Java library contains useful
top-level things, like

static PrintStream out; // standard output

which we can use to print things to the terminal, using the (non-static)
methods defined on PrintStream, e.g.

System.out.println("hello world");

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 18

FUNCTIONS ARE METHODS

Unlike in C++, all functions in a Java program are class methods
(possibly static).

All arguments are passed by value just as in C. However, remember that
object argument values are in fact references . For example:

class Foo {

static void foo(Point p) {

p.x = 0;

}

}

...

Point p = new Point(10,20);

Foo.foo(p);

// p.x now = 0

If a method has a non-void return type (primitive or class), the compiler
must be able to convince itself that all possible paths through the function
lead to a return statement with a value of appropriate type.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 19

OVERLOADING

A single class can define multiple methods with the same name, provided
that their arguments are of different types. Such methods are said to be
overloaded . The choice of which method will be called is made at
compile time , based on the types of the actual arguments provided at
the call site.

class Foo {

static int foo(int i) { return 0; }

static int foo(double d) { return 1; }

}

...

Foo.foo(3) + Foo.foo(3.14)

// evaluates to 0 + 1 = 1

Methods cannot be overloaded based on return type.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 20

STRINGS

• Strings are (almost ordinary) objects of library class String . They are
immutable , i.e., their contents can never change. We can use class
member functions to access characters inside string.

• There is a another library class StringBuilder (or StringBuffer) for
handling mutable sequences of characters.

• Strings are not arrays of characters.

Special language-level support for strings:

• Literal string constructors: "abc" creates a new String object.

• Applying the + operator to a string acts like string concatenation, e.g.,

String c = "abc" + "def"

makes c a new 6-character string object. This is actually turned into:

String c = new StringBuffer().append("abc").

append("def").toString()

Since StringBuffer().append is overloaded on all the primitive types,
we can write things like: "2+2=" + (2+2) // produces string "2+2=4"

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 21

ARRAYS

• Arrays are (slightly special) objects!

• Each array contains elements of some primitive type or class, e.g.,
int[], char[], String[], int[][].

• For compatibility with C/C++, can declare array variables in two
equivalent ways:

int[] a; int a[];

• As with other objects, an array variable is just a reference to an array;
to create the actual array (with contents) we must use new

int[] a = new int[10];

or an explicit initializer

int[] a = {1,2,3,4,5,6,7,8,9,10}

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 22

ARRAYS (CONTINUED)

• The length of an array is fixed forever when the array is created; it can
be retrieved using the built-in final instance variable length.

• All loads and stores on the array are checked against the array bounds;
out-of-bounds index causes an exception to be raised.

• As in C/C++, multi-dimensional arrays are just one-dimensional arrays
containing arrays as elements.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 23

ARRAY EXAMPLE

static double[] vAdd (double[] v1, double[] v2) {

double[] r = new double[v1.length];

for (int i = 0; i < v1.length; i++)

r[i] = v1[i] + v2[i];

return r;

}

public static void main(String[] argv) {

double a[] = {1.1,2.2,3.3};

double b[] = vAdd (a,new double [] {4.4,5.5,6.6});

...

}

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 24

PACKAGES

The package is Java’s top-level code structuring mechanism.

• A package is just a namespace containing the definitions of one or
more classes.

• Packages can include Sun’s own library, other vendors’ libraries, and
your own local code.

• Important library packages include java.lang, java.util, and
java.io.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 25

PACKAGES (CONTINUED)

• To refer to elements of a package, you can use fully qualified names ,
e.g.,

java.util.LinkedList myList =

new java.util.LinkedList();

• Better: import the package name (or specific class names) that you
need:

import java.util.*; // at top of file

...

LinkedList myList = new LinkedList();

• Package java.lang is always implicitly imported, so you never need to
qualify its class names.

• By default, classes you define go into a default anonymous package,
which is fine for now.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 26

JAVA SYSTEM ARCHITECTURE

Standard Sun JDK set-up for building Java applications:

Foo1.class

Foo2.class

Program output

Program input

foo.java javac foo.java

Library

files
.class/.jar

java Foo1

• Source file (.java extension) contains one or more class definitions.

• Use compiler executable (javac) to compile the source file into
byte-code files (.class extension). (You get one .class file for each
defined class. Name depends on class name, not on .java file name.)

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 27

ARCHITECTURE (CONTINUED)

• Byte-codes are an intermediate format that must be executed by a Java
virtual machine (JVM) executable (java). You must specify the name of
the class (without .class extension!) containing desired main method
(more below).

• JVM may interpret byte-codes directly, or may internally compile them to
machine code and then execute that code. Much more about this later...

• Both javac and java access library packages (in standard location you
don’t have to specify) to get executable code and also static typing
information (equivalent of C .h file info). Library may be in .class or
.jar (Java archive) files.

• Both javac and java read and write in your current directory.

• You can direct them to look for input files in other directories by setting
your classpath , either using the shell variable CLASSPATH or via a flag.
For now, you should make sure the CLASSPATH variables is NOT set;
some other packages on PSU CS may set it incorrectly.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 28

MAIN PROGRAM

Historically, Java programs came in two flavors:

Applets are intended to be run under the control of a browser (e.g.,
Netscape). These are largely passé.

Applications are stand-alone programs intended to be run directly by
O/S (just like C or C++ executables).

We’ll only be concerned with applications.

Every application must define some class with a method having this sig-
nature:

public static void main(String[] argv)

(where the argument name must be present, but is arbitrary).

When the application starts up, main is invoked with the argument set to
an array containing the command line parameters.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 29

EXAMPLE

Suppose file myapp.java contains the following (complete) program

class MyApp {

public static void main(String [] argv) {

for (int i = 0; i < argv.length; i++)

System.out.println(argv[i]);

}

}

This can be compiled to bytecode as follows:

% javac myapp.java

%

This produces a file MyApp.class, which can be executed thus:

% java MyApp p d q

p

d

q

%

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 30

MORE TO COME

There are many important features of Java still to describe, including:

• Class inheritance and dynamic method dispatch.

• Utility collection classes, interfaces, polymorphism and generics.

• Exceptions.

• Iterators.

We will begin studying these by example in the next lecture.

PSU CS321 W’12 LECTURE 2 c© 1992–2012 ANDREW TOLMACH 31

